J Sign Process Syst
DOI 10.1007/s11265-015-1010-8

Improved Message Forwarding for Multi-Hop HaRTES

Real-Time Ethernet Networks

Mohammad Ashjaei! - Luis Silva? - Moris Behnam! - Paulo Pedreiras? -

Reinder J. Bril? - Luis Almeidal? . Thomas Nolte!

2

Received: 15 October 2014 / Revised: 20 February 2015 / Accepted: 21 April 2015

© Springer Science+Business Media New York 2015

Abstract Nowadays, switched Ethernet networks are used
in complex systems that encompass tens to hundreds of
nodes and thousands of signals. Such scenarios require
multi-switch architectures where communications fre-
quently occur in multiple hops. In this paper we inves-
tigate techniques to allow efficient multi-hop communi-
cation using HaRTES switches. These are modified Eth-
ernet switches that provide real-time traffic scheduling,
dynamic bandwidth management and temporal isolation
between real-time and non-real-time traffic. This paper
addresses the problem of forwarding traffic in HaRTES net-
works. Two methods have been recently proposed, namely
Distributed Global Scheduling (DGS) that buffers traffic
between switches, and Reduced Buffering Scheme (RBS),
that uses immediate forwarding. In this paper, we discuss
the design and implementation of RBS within HaRTES and
we carry out an experimental validation with a prototype
implementation. Then, we carry out a comparison between
RBS and DGS using worst-case response time analysis and
simulation. The comparison clearly establishes the supe-
riority of RBS concerning end-to-end response times. In

P< Mohammad Ashjaei
mohammad.ashjaei@mdh.se
I MRTC/Milardalen University, Visteras, Sweden
2 DETVIT/University of Aveiro, Aveiro, Portugal
3 IT/DEEC/University of Porto, Porto, Portugal
4 Technische Universiteit Eindhoven (TU/e), Eindhoven,

The Netherlands

Published online: 10 May 2015

fact, with sample message sets, we achieved reductions in
end-to-end delay that were as high as 80 %.

Keywords Switched Ethernet - HaRTES architecture -
Real-time communication - Real-time Ethernet - Response
time analysis - Simulation

1 Introduction

Real-time Networked Embedded Systems (NES) are cur-
rently found in a vast range of domains, such as indus-
trial process control and supervision, intelligent buildings,
energy distribution facilities and cars. In these domains,
applications range from embedded command and control
systems to image processing, monitoring, human-machine
interfacing, etc, that request growing amounts of heteroge-
neous data to be exchanged over the network, frequently
with timeliness constraints and more and more with recon-
figurability requirements. This made Ethernet technology
particularly appealing for NES, due to features like high
bandwidth, openness, wide availability and low cost. Fur-
thermore, it is a mature and well established technology,
with millions of nodes installed worldwide, being easy to
deploy, manage and maintain. However, issues like a large
overhead, lack of connectors suitable to harsh environ-
ments and, most notably, an inherently non-deterministic
carrier-sense with collision detection (CSMA/CD) con-
tention resolution mechanism, conditioned the adop-
tion of Ethernet in time-critical applications for many
years.

To overcome those shortcomings several modifications,
extensions or limitations, have been introduced to enforce
time-constrained communication over Ethernet, originating
the so called Real-Time Ethertnet (RTE) protocols [1], e.g.,

@ Springer

mailto:mohammad.ashjaei@mdh.se

J Sign Process Syst

TTEthernet [2], PROFINET [3] and more recently Ethernet
AVB [4-6].

Several strategies have been followed by existing RTE
protocols, typically favoring a certain aspect such as safety,
timeliness, heterogeneity or reconfigurability in dynamic
real-time applications. Dynamic reconfigurability is spe-
cially important to improve efficiency in network band-
width usage, particularly in bandwidth consuming industrial
media control applications [7], such as machine vision
[8], automated inspection [9], vehicle guidance [10], and
even infotainment applications in vehicles [11, 12]. In
these applications, bandwidth usage can be traded online
for quality of service (QoS), e.g., to serve more mul-
timedia streams with reduced QoS or improve the QoS
when there are less streams and there is bandwidth
available. However, ensuring a continued adequate QoS
requires an appropriate management that enforces continued
timeliness.

Protocols catering for all these requirements are still very
few. This is the case of the Hard Real-Time Switching archi-
tecture (HaRTES) [13] that aims at supporting dynamic and
heterogeneous communication requirements with efficient
bandwidth management in NES. HaRTES supports real-
time periodic, real-time sporadic and non-real-time traffic
with temporal isolation between each type of traffic, hence
addressing the heterogeneity requirement. In the HaRTES
architecture, the former traffic type is called synchronous
traffic, while the two latter types are called asynchronous
traffic. Further, the traffic is scheduled dynamically, thus
its properties can be updated during system operation in
order to adapt to eventual changes on the application
requirements. Finally, it has integrated bandwidth manage-
ment with an admission control mechanism that assures a
continued real-time behavior of the system, even during
reconfigurations.

1.1 Problem and Contributions

This work addresses the problem of building large networks
with multiple interconnected HaRTES switches extending
their individual properties to end-to-end connections. This
problem was originally addressed in [14] where a traf-
fic forwarding method was proposed, called Distributed
Global Scheduling (DGS). However, DGS produces high
end-to-end response times due to buffering them between
switches.

Recently, we proposed a new forwarding method called
Reduced Buffering Scheme (RBS) [15] that significantly
reduces the end-to-end response times of DGS and we also
provided a worst-case response time analysis. Moreover, we
compared RBS and DGS based on the worst-case response
time analysis. In this paper we extend such work with the
following contributions:

@ Springer

1. Design and implementation of RBS within the HaRTES
architecture;

2. Comparison between RBS and DGS with respect to
end-to-end response times based on simulation;

3. Experimental validation of RBS with an implementa-
tion prototype.

1.2 Overview

The rest of the paper is organized as follows. The next
section discusses the related work. Section 3 presents the
HaRTES architecture, while Section 4 presents multi-hop
HaRTES architecture including DGS and RBS forwarding
methods. Section 5 presents the system model that is used
in Section 6 for the response time analysis. Then, Section 7
shows the comparison between RBS and DGS. Section 8
presents the hardware modifications, while Section 9 shows
the experimental validation on hardware. Finally, Section 10
concludes the paper and presents some directions for future
work.

2 Related Work

In this section we present an overview of RTE protocols and
their timing analysis.

2.1 Overview of RTE Protocols

Research on the use of Ethernet for real-time applications
dates back to more than 30 year ago. For shared Ether-
net, see the survey of earlier RTE protocols [16], and for
switched Ethernet, EtheReal [17] and the EDF scheduled
switch [18], which are both based on channel reservations
support on enhanced switches.

More recently, many academic and industrial RTE pro-
tocols have been actively developed most of which reached
the market. Some of the more prominent ones are TTEther-
net [2], PROFINET IRT [3], Ethernet POWERLINK [19],
EtherCAT [20] and Atacama [21]. All these protocols are
based on the time-triggered (TT) communication paradigm,
complemented with some support to event-triggered (ET)
traffic. Moreover, TT traffic is statically configured, at pre-
runtime and cannot be changed online.! At best there is
support to a pre-defined set of modes that can be selected
online. Therefore, these protocols are not suitable to handle
dynamic real-time applications.

Avionics Full DupleX Switched Ethernet (AFDX) is a
standard that defines the electrical and protocol specifica-
tions for the data exchange between Avionics Subsystems.

EtherCAT does not exclude run-time traffic updates but it is essen-
tially used with static communication requirements

J Sign Process Syst

It is based on standard Ethernet switching components that
performs the standard functions, such as filtering, polic-
ing, and forwarding. However, some services are statically
configured to assure a deterministic behavior. AFDX net-
works are based on the concept of Virtual Links (VL), which
define the logic path between source and destination end-
system(s). The load submitted by each VL is limited thanks
to the imposition of the so-called Bandwidth Allocation
Gap between successive frames. When properly designed,
end-to-end delays can be upper bounded.

More recently, Audio Video Bridging (AVB), a set of
technical IEEE standards ([4—-0]), is gaining momentum,
mainly among the automotive industry. For example, BMW
is using this technology since 2013, in its X5 model. Eth-
ernet AVB supports IEEE 1588-based clock synchroniza-
tion, bandwidth reservations and traffic shaping services, at
switches and end nodes. AVB defines currently two traffic
classes (named A and B), and for seven hops, guarantees a
maximum delay of 2ms and 50ms, respectively.

Both AVB and AFDX are inherently event-triggered
and offer predictable services, with upper bounded latency.
In principle, it would be possible to build dynamic sys-
tems, although at the moment of this writing we could not
find references to that in the literature. However, they lack
support to scheduled traffic, and thus low-latency and low-
jitter traffic, common in many real-time applications, is not
supported. Recently, an effort from the academia to add
scheduled services to AVB has been done [22]. According to
this proposal, a higher priority class above class A is intro-
duced such that the traffic of that class does not go through
the traffic shaper. This type of traffic is called Scheduled
Traffic (ST) and its transmission is planned offline. How-
ever, at this moment it is not accepted as part of the Ethernet
AVB standard.

The IEEE 802.1 Time Sensitive Networking Task Group
[23] is continuing the work previously developed in the
scope of Audio Video Bridging (AVB), developing a set
of technical IEEE standards for Ethernet networks that
define mechanisms for transmission of low latency data and
to provide high availability. Potential applications include
industrial control and supervision, as well as vehicular net-
works. In particular, 802.1Qbv controls data transmission on
a class-level basis, instead of a per-stream level. As classes
are defined by the priority of the VLAN tag, the maximum
number of priorities is 8, which limits the system schedu-
lability. Despite presenting interesting improvements, at the
scheduling level, IEEE 802.1Qbu/Qbv have limited schedu-
lability due to the reduced number of priorities. Also, the
time-aware shapers are strictly periodic, that causes prob-
lems with data sources having non-harmonic periods. More-
over, the standards do not define how these shapers are
managed, so it is not clear if orchestrated online updates of
multiple shapers can be made efficiently.

From the above discussion we can conclude that RTE
protocols either favor static TT services, or adopt pure ET
approaches. In both cases, they are not suitable to cope
with the requirements of emerging dynamic applications.
In the former case the protocols are too rigid, not allow-
ing dynamic adjustments of the communication subsystem
to the application requirements. In the second case the pro-
tocols cannot guarantee short response times to TT traffic.
This observation led originally to the development of the
FTT-SE protocol [24], which features online scheduling in
a master node, natural support to TT and ET traffic types
and integrated QoS and admission control. As FTT-SE is
based on COTS switches, it presents some structural limita-
tions and vulnerabilities, the most important one is relying
on the end nodes for controlling the ingress traffic. Con-
sequently, for instance, the presence of a single node not
compliant with the protocol (or actually a malfunction FTT-
compliant node) endangers the timeliness guarantees of all
traffic.

The HaRTES switch [25] overcomes this problem by
inserting the master module inside the switch and by using
the information provided by the master to filter incoming
packets. Thus, the HaRTES switch enforces traffic con-
finement and rejects packets that violate the associated
reservations.

Despite the similarities between FTT-SE and HaRTES,
there are also subtle but important differences, which have
a strong impact on the operation and performance of both
protocols. In particular, in HaRTES it is possible to have
different reserved bandwidth in different links, according
to the actual load. Moreover, unlike the COTS switches
used in the FTT-SE, HaRTES has the ability to selectively
buffer the traffic. Therefore, the results previously devel-
oped for multi-hop communication in the FTT-SE networks
(e.g. [26]) would result in sub-optimal performance.

A qualitative comparison of the RTE protocols men-
tioned above is given in Table 1.

2.2 Timing Analysis Approaches

For real-time network applications, a timeliness guarantee
is demanded. For such applications a worst-case response
time analysis is required to provide analytical bounds on the
maximum delay that communication can take.

Regarding the timing analysis of multi-hop Ethernet net-
works, several methods are utilized. In the work presented
in [27], Network Calculus is used to analyze the end-to-
end delays of the traffic in a single-master and multi-switch
network topology using the FTT-SE protocol. In addition,
Network Calculus is used in networks of standard Ether-
net switches as presented in [28]. In [29] three methods
are used to derive the end-to-end traffic delays in a multi-
hop AFDX network. These three methods include Network

@ Springer

J Sign Process Syst

Table 1 Qualitative comparison among RTE protocols.

RTE Protocol Time-Triggered Event-Triggered Clock Synchronization Online Reconfiguration
for Time-Triggered Traffic

TTEthernet Yes Yes (rate constrained) Requires No

PROFINET IRT Yes Yes (limited) Requires No

Ethernet POWERLINK Yes Yes Provides No (but possible)

EtherCAT Yes Yes Provides No (but possible)

EtheReal [17] No Yes No Not applicable

Atacama [21] Yes Yes Requires Yes (predefined)

EDF Scheduled Switch [18] Yes Yes Requires Yes

AFDX No Yes No Not applicable

Ethernet AVB Under modification Yes Requires Yes

FTT-SE [24] Yes Yes May provide Yes

HaRTES [25] Yes Yes May provide Yes

Calculus, network simulation and model checking, among
which Network Calculus exhibited a higher pessimism.

A tighter end-to-end delay analysis for AFDX networks
is achieved using the trajectory approach as presented
in [30]. However, in [31], the authors showed that for some
corner cases the trajectory approach introduces some opti-
mism, even though these corner cases have not existed in
any AFDX configuration. The solution to solve the opti-
mism problem is presented recently in [32].

In the context of Ethernet AVB, the work presented
in [33] has utilized the Network Calculus method to derive
traffic end-to-end delays. Also, the work in [34] presents
a worst-case delay verification of in-vehicle Ethernet net-
works using the same analytical framework to generate
upper bounds and checking them against experiments in
worst-case scenarios. Recently, a schedulability analysis
based on a response time calculation for the traffic class A
and B is proposed in [35].

A different approach is followed in [36] and [37] that
derives end-to-end delay bounds for a single flow in FIFO
multiplexed sink-tree networks using a modified Network
Calculus framework. These works use partitioning of a
network topology into a set of logically separated sink-
trees having egress nodes at the root and ingress nodes
at the leaves. The traffic is aggregated in the nodes by
introducing a FIFO policy called aggregated scheduling.
A class of service curves is introduced to determine the
service that is received in an aggregate scheduling net-
work. Furthermore, the work in [38] utilized the mentioned
method to investigate an admission control in sink-tree
networks.

In our previous work, presented in [26], we computed the
worst-case end-to-end delay of traffic, based on a response
time analysis, for multi-hop communication in the FTT-SE
protocol and we compared the results with the ones com-
puted using Network Calculus. We showed that, Network

@ Springer

Calculus generates higher pessimism. Thus, we present a
response time analysis in line with [26] but adjusted to the
Reduced Buffering forwarding Scheme. Note that no other
existing switched Ethernet architecture presents the whole
set of properties exhibited by HaRTES-RBS which, for that
reason, required a specific analysis.

3 HaRTES Architecture

In this section, we describe the functional structure of the
HaRTES switch and we present the traffic scheduling in a
network using the HaRTES switch.

3.1 HaRTES Switch Structure

The HaRTES switch is a modified Ethernet switch based on
a master-slave technique where the master module is devel-
oped inside the switch. The abstract functional structure
of the HaRTES switch is illustrated in Fig. 1. The packets
arriving at the input ports are analyzed by the Packet Classi-
fication module, which is implemented for each input port.
This module separates the traffic types and appends them
to the associated memory queue in the Memory Pool mod-
ule, i.e., the packets, depending on their types, are stored
in different memory sections of the Memory Pool. Note
that, HaRTES handles arbitrary large messages, thus these
messages are fragmented to small packets.

The Master module contains the scheduler, admission
control, QoS management and a repository of the traffic
attributes. The traffic attributes include the deadline, mini-
mum inter-arrival time/period, message length and priority.
The scheduler in the Master module will be described in
Section 3.2.

For each output port three FIFO queues are implemented
to handle synchronous, asynchronous and non real-time

J Sign Process Syst

Figure 1 HaRTES functional
structure. —
Port 1
Pa.c.ket. S
Classification
)
e
S
(o]
& —
-
>
Q.
£
Port n Packet 5
Classification

= —
<3 5 7]
Z 3 2 Port 1
£ 3 = n
n | © e}
Master < 9 & 5
ST o a
Memory htl — '5'
Pool [— a
s 5 5
! <4 2 3
Packet 5 S| §- Portn
o]
> . >~ 2 >
Forwarding —r> g & [2) -
a L

packets, which are identified as Syn, Asyn and NRT respec-
tively in Fig. 1. The dispatcher allows packet transmission
from each queue during the associated windows only, hence
it handles the transmission in the reserved bandwidths,
thereby enforcing temporal isolation.

The Packet Forwarding module inquires the repository
to determine the set of ports where the consumers of the
packet are attached and it inserts the packet into the out-
put FIFO queue(s) based on the packet type. Note that, the
non-real-time packets are forwarded the same way as done
by standard Ethernet switches based on the MAC address.
Thus, the HaRTES switch behaves as a COTS switch for the
non-real-time traffic, yet with restricted bandwidth reserved
for such traffic.

3.2 HaRTES Traffic Scheduling

The HaRTES architecture is a micro-segmented network
that is composed by HaRTES switches. The Master module
is responsible to schedule the traffic in fixed-duration time-
slots, designated Elementary Cycle (EC). The scheduling
is carried out on-line according to any desired scheduling,
e.g., Fixed Priority Scheduling Policy. The EC is divided
in two windows, one for scheduling the synchronous traffic
(Synchronous Window) and the other one for asynchronous
traffic (Asynchronous Window), as shown in Fig. 2. Note
that the Asynchronous Window is used for both asyn-
chronous and non-real-time traffic. The latter is transmitted
strictly after the former and when there is enough time left
free in the Asynchronous Window.

In each EC the switch determines new activations of
the synchronous messages, it updates the ready queue and
checks which ready synchronous messages can be transmit-
ted within their associated window. The scheduled messages
are encoded into a particular message, named Trigger Mes-
sage (TM), to be transmitted to the slave nodes at the
beginning of the EC (Fig. 2). The messages that do not fit

Figure 2 The EC partitioning
in HaRTES.

A

in the window are kept in the ready queue for the following
ECs. The slave nodes receive the TM, decode it and initiate
the transmission of the messages identified in the TM.

Conversely, the activation of asynchronous messages are
unknown in advance. In the HaRTES architecture, the asyn-
chronous messages are transmitted autonomously without
being triggered by the associated switch. The switch for-
wards them immediately through a hierarchy of servers [13].
Note that the asynchronous messages are not allowed to be
transmitted within the synchronous window. Thus, during
the synchronous window, such messages are buffered in the
switch.

The HaRTES switch generates two types of delays,
which are known as store-and-forward and hardware fab-
ric latency. The former corresponds to the time required to
receive a message before forwarding it, hence it is equal to
the message size in time, whereas the latter delay is due
to the processing speed of the switch. The hardware fab-
ric latency is a bounded value. The summation of the two
delays is called switching delay.

All messages that are scheduled to be transmitted in
one EC, should be received by the end of the EC. In
order to prevent overruns, the transmission of messages
that cannot be fully transmitted within the transmission
window is delayed for the next EC, e.g., m3 in Fig. 3.
This behavior introduces an idle time in each transmission
window.

4 Multi-Hop HaRTES Architecture

In this section, we present the multi-hop HaRTES topol-
ogy and we describe two methods, called Distributed
Global Scheduling (DGS) and Reduced Buffering Scheme
(RBS), to forward the traffic through multiple HaRTES
switches. DGS was proposed in [14] and RBS was presented
in [15].

Elementary Cycle (EC)

HaRTES | ™ |

S
rd

Synchronous Window Asynchronous Window

@ Springer

J Sign Process Syst

Figure 3 Inserted idle time.

) EC, - EC S
_ Synchronous Window _ Synchronous Window
—_—— Tepenma _ i
HaRTES| | m;] Mg f...m;. I m [m] 1 N
1 -l I -7 |
Idle Time

4.1 Multi-Hop HaRTES Topology

The multi-hop HaRTES architecture is built by connecting
multiple HaRTES switches in a tree topology, as it presents
a good compromise between cabling length and routing
complexity. Figure 4 shows an example of a HaRTES net-
work, where H1-H3 are the HaRTES switches, responsible
to schedule the traffic, and nodes A-F represent data sources
and/or consumers (e.g., sensors, controllers, actuators), that
will exchange real-time data via the HaRTES network.

In this architecture we define two types of messages
based on their transmission route. Messages that are sent
through a single switch are called local messages, while
messages that cross multiple switches are called global
messages. Moreover, we distinguish the links as follows.
The link connected between a node and a switch is called
local-link, whereas a link between two switches is called
inter-link.

4.2 Distributed Global Scheduling

In this method, the scheduling of the messages is carried
out by all involved switches. First, the switch to which the
source node is connected to, schedules the message to be
transmitted from the source node and buffers it in its own
memory. Then, the second switch in the route of the mes-
sage schedules the message to be sent from the first switch
in a posterior EC. Again, the message is stored in the sec-
ond switch to be scheduled for the next hop in the next
EC. The hop-by-hop scheduling of the message continues
until the last switch, where the destination node is connected
to. The message is not buffered in the last switch, being
immediately forwarded to the destination node in one EC.

Figure 4 The multi-hop
HaRTES topology.

mmmmmw
Fumwu—

mmmm
mmmm——

All switches have a repository containing the message
attributes. In this method, a phase for a message is one of
those attributes, which is defined to have different values in
each switch. The phase is specified in number of ECs and
it determines the time difference between activation of the
message in the switch and the activation time in the source
node. This parameter is essential to guarantee that, in each
switch, the message being forwarded is always received
from the previous switch.

Figure 5 illustrates the transmission of message m; from
node D, connected to switch H2, to node E, connected to
switch H3, in the network depicted in Fig. 4. Assume that
the phase for m in switch H2 is 0, while it is 1 and 2 in
switch H1 and H3, respectively. When m is activated in
E Cy, switch H2 schedules it to be sent and stored in switch
H2 itself. The message is activated in switch H1 in the next
EC (ECy41) as the phase is 1, hence switch H1 schedules
it to be transmitted from the internal memory of switch H2
to the internal memory of switch H1. In ECy, the mes-
sage is activated by switch H3, again since the phase is 2
for the message in switch H3. Also, the destination node,
i.e., node E, is connected to switch H3. Therefore, switch
H3 schedules m to be sent from the internal memory of
switch H1 and forwarded to node E. Note that the switching
delay has no impact in the first two switches as the mes-
sage is buffered. However, in the last switch the message
transmission is affected by the switching delay.

This method, due to the definition of the phase, requires
that the switches are timely synchronized. The synchroniza-
tion is achieved by the TM transmission from a switch to all
nodes and to the other switches down the tree topology. In
this architecture, the switches synchronize with their parent
switch.

mumnla suawaw
mmmmwE wgumue

)
(o]

@ Springer

ga—

=

F_|

J Sign Process Syst

_ EC k - EC k+1 - EC k+2 o
< . 7| . IS . L
Synchronous Window Synchronous Window Synchronous Window
‘< >‘ ‘< >‘ ‘< >
|
D out \l m, | I | I I I _
in ; ' ; ; { ; { -
\
| | | | |
H2 ot B —— —
i |
ool N = |
H1 °ut I | | - I I my 1
; ‘ ‘ ‘ r
e o b= Y =
|
H3 out I I I I I v m, I
|n T T T T T " T
I | | I | m, \ I
| | | | | 1 |
E ©out ! ! 1 ! ! Y ! .
in | H f ! | m, I T
< S

Scheduled by H2, with
phase = 0 and
buffered in H2

Scheduled by H1, with
phase =1 and

buffered in H1

5
>

<
<

Scheduled by H3, with
phase = 2 and
forwarded to E

Figure 5 The operation of the DGS method.

Moreover, in order to minimize the end-to-end delay,
the DGS method requires that each switch schedules the
global messages with a given relative offset, which is based
on the worst-case response time from the source node
to each one of the switches in the path. This approach,
in general, entails some degree of pessimism leading to
longer maximum end-to-end delays than necessary. Among
the sources for pessimism are the blocking and interfer-
ence levels that are typically lower than assumed by the
analysis.

Note that the DGS method was proposed to handle the
synchronous messages, only, whereas, the RBS method
provides a scheduling method for both synchronous and
asynchronous messages.

4.3 Reduced Buffering Scheme

The DGS method is conceptually very simple. In fact the
interlinks are handled in the exact same way as the local
links. However, such simplicity comes at a price. In this par-
ticular case each hop in the network causes a delay of at
least one cycle. In reality, such hop delay can often be much
higher than one EC, due to the need to accommodate the
scheduling jitter. Therefore, the schedulability of multi-hop
message streams may degrade severely when the network
dept grows and the number of messages increases.

Figure 6 The EC partitioning

This performance bottleneck can be tackled by chang-
ing the way traffic is handled at the output ports. In fact,
source local-links have a structure and operation methodol-
ogy that is severely constrained by the need to control the
ingress traffic. Interlinks and destination local-links do not
have such constrains, since the traffic that crosses them was
already scheduled (if synchronous) and validated (if real-
time) by the first HaRTES switch in the chain. Therefore,
we advocate the use of simple priority queues at the output
ports, combined with a dispatcher to enforce the EC phases.
In this way global messages are forwarded to the next hop
as soon as they reach the top of the queue and, of course,
when the active window is the correct one.

As shown in Fig. 6, the RBS scheduling model maintains
the EC organization, namely the partitioning between syn-
chronous and asynchronous windows. However, the win-
dow size can be individually adjusted in each interlink, to
accommodate the balance between local and global load
crossing that link. As for local links, a Guard Window is
also reserved in the beginning of each EC, for management
purposes.

The uplink between the source node and the first
HaRTES switch in the multi-hop chain is managed in the
standard way. This means that the switch schedules the syn-
chronous messages and sends the EC schedule (via the TM)
to the slave node(s), at the beginning of the EC within the

Elementary Cycle (EC)

in the RBS method. € >
Guard Win

D —
|

Source | Syn Window Asyn Window R
Local-Link i

Inter-Link 1 Syn Window Asyn Window

|
|

Destination | Syn Window Asyn Window N
Local-Link i

@ Springer

J Sign Process Syst

guard window. Then, slave nodes decode the TM and, when
they are producers of scheduled messages, initiate their
respective transmission within the synchronous window.

Messages are placed in the priority queue of the out-
put ports. Concurrently, the dispatcher checks for the EC
phase and, during the synchronous window, continuously
forwards messages waiting on the priority queue, if any.
Since these messages come from an interlink the next switch
in the chain receives the global messages and immediately
places them on its own interlink priority queue. The pro-
cess is iterated until the end of the synchronous window.
Whenever that happens, the messages in the priority queues
are put on hold, by the dispatcher, until the synchronous
window of the following EC, when the whole process is
repeated. It can be readily seen that this strategy, which
consist in allowing each switch to forward global messages
autonomously, potentially reduces the hop delay. In fact,
high priority messages may easily cross several hops in a
single EC, a situation that was impossible in DGS. Local
messages, after being received by the switch, are inserted to
the priority queue of the destination local-link(s). The same
way as global messages, local messages are transmitted to
the destination when there is enough time in the respective
window.

To illustrate the difference between both global traffic
forwarding methods, Fig. 7 shows the transmission of mes-
sage m1 using the RBS method. The set-up is the same as
the one shown in Fig. 5, except that in this latter case it was
used the DGS method.

In ECy the message is scheduled by switch H2. Then,
its source node (node D) sends it to switch H2, which
inserts it in the priority queue of the interlink. As message
m is received before the end of ECy’s synchronous win-
dow, switch H2 forwards m to switch H1. Similarly to
switch H2, switch H1 forwards m to switch H3 as there
is still enough time in the synchronous window. However,
the transmission of m is suspended in switch H3, due to
the lack of remaining time in the synchronous window. In
ECy41 the transmission is resumed and m is received by
the destination node (node E).

Figure 7 The operation of the

Asynchronous real-time messages are forwarded accord-
ing to the RBS method, exactly in the same way as the
synchronous ones. The only difference is that they are sent
by the source nodes autonomously, typically in response to
some changes in the environment, instead of being sched-
uled by the switch (Master). Finally, the non-real-time
messages are sent within the asynchronous window, after
transmission of all asynchronous messages, in a way that
approaches the operation of a background server. It should
be stressed that this class of traffic is handled strictly in
FIFO order and without timeliness guarantees (best-effort
service class).

Time synchronization among the HaRTES switches
allows increasing the efficiency of the RBS method. We pro-
pose the use of an IEEE 1588 based clock synchronization
mechanism, as the one proposed in [39] for a similar case.
The required signaling is carried out within the Guard Win-
dow. A detailed study of the clock synchronization for the
multi-hop HaRTES architecture is out of the scope of this
paper.

Finally, several faults can affect the performance of the
network, e.g., TM missing, master fault and message miss-
ing. Mitigating such faults requires error detection and
recovery mechanisms such as those proposed in [40, 41].
Fault tolerance issues are, however, out of the scope of this

paper.

5 System Model

In this paper, we use the real-time periodic model to rep-
resent both synchronous and asynchronous messages. The
message set, composed by N messages, is defined as in
expression (1). The parameters are explained in Table 2.

I={m;(C;, PK;, D;, T;, S;, Ds;, P;, Li,n;),i=1..N} (1)

In the analysis, we consider constrained deadline, i.e.,
D; < T;. Also, The period and deadline for the messages are
expressed as an integer number of ECs. As it is mentioned in
Table 2, £; represents a set of links that m; traverses. Each

EC k EC k+1

reduced buffering scheme. ~synchronous Window “| ~synchronous Window
out ll m, I } } }
D | | |
H2 out ! - I my I 1 1 1
in | | m, I ' I | I
| \ | | |
H1 out I » | m, | I I I
n ‘ T f f
! Lm] ! ! !
H3 out | v 1 1| m, I |
in ; | m, I } } \ ;
| ' |
E out ! ! ! v I
in | i | | m, I i

@ Springer

Transmitted as long as
there is time in the window

m1 is buffered in H3,
transmitted to node E

J Sign Process Syst

Table 2 The notations used for the message parameters.

Notation Description

C; The total transmission time of m; including its packets.

PK; The maximum packet size among the packets that
compose ;.

D; The relative deadline of m; .

T; The period of m;. It also represents the minimum
inter-arrival time for asynchronous messages.

S; The source node of m;.

Ds; The destination node of m;.

P; The priority of m;.

L; The set of links that m; traverses including inter-links,
source and destination local-links.

n; The number of links m; crosses through, i.e., n; = |£;].

Iy It represents the link number x in the network.

EC The elementary cycle size.

LW, The synchronous window size in link /.

RT; Response time of m;.

RTiap Response time of m; crossing from link /, to link /.

member of L; is presented by a tuple [=< x, y > which
shows a link / between node/switch x to node/switch y. The
sequence inside the tuple shows the direction of the mes-
sage transmission in that link. The set of links in the route of
m; is presented in expression (2). Moreover, we restrict the
analysis to unicast streams, hence only one destination port
per message is considered. Note that multicast/broadcast
streams can be handled by converting them in multiple uni-
cast streams as adequate, but we leave this case out of this
paper for the sake of clarity.

ﬁl‘ = {lk|k = 1...n,-} (2)

Moreover, the set of links which m; crosses from a spe-
cific link /, until another specific link I, in its route is
defined in Eq. 3, where £; ., € Liand 1 <a < b < n;.

Liap={lnlh =a..b} 3)

We consider a fixed-priority scheduling policy for the
scheduler and we assume that the priority of messages is
assigned according to the Rate-Monotonic algorithm. Note
that messages may have the same priority when their periods
are equal.

The switching delay, which is the sum of the hardware
fabric latency and the store-and-forward delay, is specified
by SWD;.

The total response time for a message m; is specified by
RT; and it is the time interval between the activation time of
the message in the source node and the reception time in the
destination node. Moreover, we define the response time of
a message m; that crosses the links between link /, and link
I as the time lapse between the time when the messages is

inserted to the priority queue in the switch/node with output
link /,, and the time the message is inserted to the priority
queue in the switch/node with input link /,. This response
time is denoted by RT; 4 . Note that both the total response
time and the response time between two particular links are
expressed in number of ECs. In addition, the idle time is
denoted by Id.

6 Response Time Analysis for RBS

In this section, we briefly discuss the analysis for RBS for
the sake of completeness. For more details the reader is
referred to [15]. Note that the response time analysis for
a single-switch HaRTES architecture is a special case of
the analysis for the multi-hop HaRTES architecture, i.e.,
the presented response time analysis applies to both the
single-switch and the multi-hop HaRTES architecture.

According to the RBS method, the synchronous and
asynchronous messages are transmitted within separated
windows, hence they cannot interfere with each other.
Therefore, we discuss the response time analysis for them
separately.

6.1 Response Time Analysis for Synchronous Messages

In the RBS method, a message crosses HaRTES switches in
its route until there is not enough time in the transmission
window. Then, the message is buffered to be sent in the next
EC. In the response time analysis, we capture this behav-
ior by calculating the response time link-by-link from the
source node and check whether the message is buffered in
any switch connected to that link.

Suppose that we are calculating the response time of m
that is transmitted from node A to node B in the network
illustrated in Fig. 8.

First, we compute the response time for the link from
node A to switch H1, i.e., the source local-link (RT}). Sec-
ond, we compute the response time for two links from node
A to switch H2 (RT>). Then, we compare the two computed

mmmmmn wmm—
SpSNas SNsses w=w

[A]

Figure 8 Example of response time analysis procedure.

RT;

@ Springer

J Sign Process Syst

response times (in number of ECs), i.e., the one for source
local-link and the one from node A to switch H2. If they are
equal, which means that the message is transmitted in the
same EC, we continue to calculate the response time for the
three links from node A to node B (R73). Again, we com-
pare the new computed response time with the previous one.
In this example, assume that R7, and RT3 are not equal.
This means that the message is buffered in the switch H2,
hence we store the previous response time (R7>) to the total
response time and we start computing the response time
from the link between switch H2 and node B (RT}). Finally,
the total response time, in this example, is the sum of the
stored total response time and the new computed response
time, i.e., RT» + RT4. This way we capture the behavior
of the RBS method that has a combination of buffering
and forwarding instances for a message through switches.
Algorithm 1 illustrates such a calculation.

Algorithm 1 Response Time Calculation for m;
1. RT; =0
2:2a=b=1
3: while b < n; do

4: rtiq.p = responseTimeCalc(i, a, b)

S: RTi,a,b = ’Vr[l’;f(éb

6: if(a!= b) && (RT; 4 ' = RT; 4 »—1)) then
7: RT; = RT; + RT; 4,(p—1)

8: a=>b

9: else

10: b=b+1

11: end if

12: end while
13: RT; = RT; + RT; 4, —1)

The algorithm starts by initializing the total response
time to zero (line 1). Also, it initializes the links included in
the response time calculation to 1 (line 2). Then, the main
loop of the algorithm starts to calculate the response time
until the last link, i.e., while the condition b < n; is true
(line 3). In line 4, the response time of m; from link /, until
link [in the route of m; is calculated. Whenever both links
1, and [}, are the same, e.g., when they are initialized to 1, the
responseTimeCalc (i, a, b) in the algorithm cal-
culates the response time of m; when it crosses just one link,
e.g., from one switch to another (/; = I). The algorithm
scales the response time to the number of ECs to be able to
compare it with the previous response time (line 5).

When the algorithm computes the response time in one
link (i.e., I, = Ip), the previous response time is not avail-
able to compare with the latest response time. In this case,
the loop continues for the next link in the route of m;. This
checking is carried out in line 6 and continues in line 9.
In contrast, if the response time computation is for several
links from link /, to link /;, and if the latest response time

@ Springer

is not equal to the response time calculated until the previ-
ous link (line 6), the message m; is buffered in the previous
switch. Therefore, the algorithm stops calculating and adds
up the calculated response time until previous link /_1)
to the total response time R7; (line 7). This means that we
calculate the response time for m; until link /;,—1), where
the message is buffered. Then, the algorithm commences to
compute the response time from link /;. Thus, line 8 sets
the starting link /, to the link that the calculation stopped,
i.e., link /. This procedure continues until the last link in
the route of m; and the algorithm adds up the last response
time to the stored total response time during the calculation
(line 13).

As it is explained, the function responseTimeCalc
(i, a, b) computes the response time for m; from link
I, until link [, in the route of the message. In this paper, we
use the classical response time calculation based on accu-
mulating delays within iterations. However, due to having
specified windows for the message transmission, the mes-
sages are not allowed to be sent at any time other than their
associated window. Therefore, an inflation factor should
be taken into account when performing the response time
analysis.

Note that, according to the RBS method, the windows
size in each link can be different. Also, since Algorithm 1
calculates the response time between two specific links, the
inflation factor «; 4, for m; should be presented between
link /, and link /. Therefore, the inflation factor is calcu-
lated in Eq. 4 by considering a minimum length of windows
in the links between [, and [;, to assume that the worst-case
situation is taken into account. Note that, L W; is the length
of a transmission window in link /; and Id; ; is the idle time
in the transmission windows of link /; (L Wj).

min (LW; — 1d; ;)
=a..b

I=a..
Uiab = EC “)

The idle time is the maximum packet size among the
highest and the same priority synchronous messages that
share links with m; in link /; and the message itself. The idle
time is calculated in Eq. 5.

(PK,, PK;) ®)]

ld;; = max
Vr € [1, N]
A m, € hep(m;)
AleLl,

The response time of m;, shown in line 4 in Algorithm 1,
is evaluated iteratively in Eq. 6 by considering the transmis-
sion time of the message itself and the interference from
other messages. The interference of other messages is cat-
egorized in three following parts: (i) the interference from
higher and the same priority messages that share links with
m; between link [, and link /5, which is specified by I; 4 p,
(i) the blocking from the lower priority messages sharing
the links with m; between link /, and [}, which is denoted

J Sign Process Syst

by B; 4, and (iii) the switching delay of the message that is
denoted by SD; 4 . Note that the interfering and blocking
messages are of the synchronous type.

@) Ci
rti,a,b =
®jab

+liap+ Biapb+ SDiap (6)
The iteration can start from x©@ = a»Li;,’ and the

response time of m; between link /, and link lb“i’s calculated
in Eq. 7.

(x) (x—=1)

Ttiap = rt when Py =T @)

i,a,b

The first interference term in Eq. 6 is caused by the higher
and the same priority synchronous messages (hep(m;)) that
share links with m; between link /, and link /, in the route
of the message. This interference is computed in Eq. 8.
Note that, the interference should be inflated by the inflation
factor of the associated link.

(x=1)
rt. C'
,a,b
liap = > {—W — ®)
. . . Ti Qj.a,b

Vjell,N]l,j#i
Am;j € hep(m;)
A Ej NLigp #0

According to the RBS method, a message received by a
HaRTES switch is inserted into the output priority queue. If
there is enough time in the EC, the message is transmitted to
the next switch. However, it may happen that, concurrently
with the insertion, a lower priority message is transmit-
ted through the same priority queue. Therefore, the arrival
message is blocked with the lower priority message. Note
that, at most one lower priority packet can block m; and
only once in the route. The blocking for m; is calculated in
Eq. 9, where Ip(m;) is the set of lower priority synchronous
messages than that of m;.

PK
Biap= Y. max (p)
t=a+1.b,ath Vp €[l N] Yiab
ANmp € lp(m;)
AN el,
AVy,(a+1<y<tra+1#1),l,¢L,

C))

In the RBS method, synchronous messages are transmit-
ted by the source node when indicated in the TM. Therefore,
in the source local-link the blocking from the lower priority
messages cannot occur. Moreover, blocking may only occur
when a higher priority message is received and transmitted
within one EC (not buffered). Therefore, a message crossing
one link does not cross a switch, hence it is never blocked,
i.e., Bi4» = 0 when l, = [p. Thus, in Eq. 9 the summa-
tion is performed when a # b, only. Moreover, the blocking
appears at the switch output link. This leads to exclude the
first link (/) to be accounted for blocking as it is always the
input link. Therefore, the summation starts from link /(441).

The last term in Eq. 6 is the switching delay of the mes-
sage. As it is described in the system model, the switching
delay is the delay of buffering an arrival message before
transmitting. The switching delay occurs for a message
crossing a switch even without being blocked or delayed
by another message. However, the switching delay of other
messages that share links with the message under analysis
m; do not affect the switching delay of m;.

The switching delay for m; is the maximum transmis-
sion time between the synchronous messages that share both
input and output links with m;, and the message itself. Note
that all messages, including high and low priority ones, are
taken into account. The switching delay for m; transmitted
between link /, and link /, is calculated in Eq. 10. For more
details on the proofs, the reader is referred to [15].

SWD;, SWD
SDiap=) max <#>
t=a+1..b,a#b Vg € [1, N] Qi a,b
Nl ely
Alg—1y € Ly

(10)

Note that when calculating the response time in one link,
the message does not cross any switch. Thus, the switch-
ing delay does not exist, i.e., SD; 4 = 0 when [, = Ip.
Moreover, the same as blocking, the switching delay does
not appear in the first link as it is the input link. Thus, the
summation starts from the second link /(44 1).

6.2 Response Time Analysis for Asynchronous Messages

The asynchronous messages are forwarded through multi-
ple HaRTES switches in the same way as the synchronous
messages except that they are not triggered by the TM in the
source node. Therefore, blocking may occur in the source
local-link, in contrast with the synchronous messages, i.e.,
Bi 1,1 # 0. However, in links other than the source local-
link, when computing the response time for one link, the
blocking does not exist as the message was buffered and
the concurrent transmission with a possible lower priority
message did not occur. Thus, B; ;. = 0 whenl, =1, # [;.

In addition, when calculating the response time the inter-
fering and blocking messages are of the asynchronous
type. Also, the inflation factor is calculated considering the
asynchronous window for LW.

Algorithm 1 calculates the total response time (RT;)
for an asynchronous message m;, where the response time
between two particular links /, and [, are calculated using
Egs. 6 and 7.

6.3 Single-Switch Response Time Analysis

The response time analysis for the single-switch HaRTES
architecture is essentially a specific case of the analysis for

@ Springer

J Sign Process Syst

the multi-hop HaRTES architecture. In a single-switch net-
work where the traffic is transmitted using the RBS method,
a message crosses at most one HaRTES switch, hence two
links, i.e., the source and destination local-links. Therefore,
in Algorithm 1, a and b become the source local-link and the
destination local-link, respectively. Moreover, the computa-
tion, that is presented in Eqs. 6 and 7, maintains the same.
However, in the blocking and switching delay calculations,
which are presented in Egs. 9 and 10, the summation will
be removed as a message is crossing one switch, only. This
means that there is just one blocking message in the destina-
tion local-link, and one switching delay caused by at most
one message.

6.4 Algorithm Complexity

The complexity of Algorithm 1 is O(N x M) for all mes-
sages in a set, where N is the number of messages in the
set and M is the maximum number of links in the route
of the messages, i.e., M = maxy;¢[1,n](n;). Moreover, the
response time calculation for a message, shown in line 4 of
Algorithm 1, is pseudo-polynomial as it is a recursive func-
tion. Therefore, the complexity of the algorithm remains
pseudo-polynomial.

7 RBS and DGS Comparison

In this section, we evaluate the RBS method in different
perspectives. First of all we compare the RBS method, pro-
posed in this paper, with the DGS method presented in
[14] based on the response time analysis. We show that the
RBS method decreases response time of messages signif-
icantly compared with the DGS method. We present this
comparison in two different network sizes, a small net-
work consisting of 3 switches and a larger network with 7
switches.

In our second evaluation, we define a network with a set
of messages that are generated randomly. Then, we simu-
late the traffic transmission in the RBS and DGS methods.
We measure and calculate the messages response times in
both methods and we show the differences from calcula-
tion and simulation perspectives. In the third evaluation, we
generate 50 random network architectures with random set
of messages and we simulate the traffic forwarding in both
methods. Again, we show the differences of the measured
response times, in the generated architectures.

In all evaluations in this section, we set the network
capacity to 100M bps and the hardware fabric latency of the
switch is 3uus. Also, we assumed that all messages are com-
posed by only one packet. Note that despite the capability
of the RBS method to handle different sizes for each link,

@ Springer

for the sake of simplicity, we considered the synchronous
window in all links to be equal.

7.1 Comparison based on the Response Time Analysis

For this comparison we defined two different network sizes,
one with three switches and the other one with seven
switches.

7.1.1 Scenario 1: Three-Switches Network

We considered a network comprising 3 switches along with
6 nodes, as illustrated in Fig. 9.

We generated 50000 sets each containing 20 messages.
These messages are generated randomly and all of them are
defined as global and of synchronous type. The periods of
the messages are selected within [2, 22] EC, and their prior-
ities are assigned based on the Rate Monotonic algorithm.
Note that the messages share a priority level when their
periods are equal. Moreover, the transmission time of the
messages is chosen within [80, 123]us.

In addition, the EC size was set to 1ms, where 700us are
allocated for the synchronous window.

In this example, we tagged three messages in each set,
a lowest priority, a medium priority and a highest prior-
ity. Then, we calculated the response time of the tagged
messages according to the DGS and RBS methods. Note
that, we consider only schedulable sets. We compute the
difference between the two response times for the tagged
messages and we normalize the results using Eq. 11.

RTDGS _ RTRBS
max(RTPGS RTRBS)

Diff = x 100 1D

Furthermore, we counted the sets where the normalized
difference of their response times for the tagged messages
is within a certain value. These values go from —20 % until
90 % with an interval of 5 %. Note that the normalized dif-
ference cannot reach 100 % as the response time in the RBS
method cannot be zero in Eq. 11. The negative value for
Diff shows that the response time for the tagged messages
is smaller in the DGS method, whereas the positive value for

HaRTES1

Figure 9 Three-switches network.

J Sign Process Syst

Diff indicates that the response time for the tagged mes-
sages is smaller in the RBS method. Also, the bigger value
shows the bigger difference between the response times.
Figure 10 depicts the result of the evaluation for the network
in Fig. 9.

In Fig. 10, the x-axis presents the percentage of the nor-
malized difference between the response times in the RBS
and the DGS methods for the tagged messages. The y-axis
shows the percentage of the sets that have the value within
each interval in the x-axis.

As it can be seen, the difference for the highest priority
message is never negative. This means that the RBS method
conducts the highest priority message always faster than in
the DGS method. Moreover, around 46 % of the sets have a
response time difference within [50 %, 55 %) for the highest
priority message. In other words, in around half of the gener-
ated sets, the highest priority message has around two times
better response time in the RBS method compared with the
DGS method. Also, in around 46 % of the sets, the differ-
ence of the response times for the highest priority messages
is within [65 %, 70 %). The rest of the sets have the other
differences, for instance, around 4 % have the difference
within [75 %, 80 %).

The reason for the big difference of the response times
for the highest priority message is that, in the DGS method,
the message is buffered in each switch. However, in the RBS
method, the message can be forwarded as long as there is
time available in the transmission window. Therefore, the
higher priority messages can be conducted through multiple
switches as the interference to delay them is very low.

The difference of the response times for the medium pri-
ority message is always zero or positive. For around 25 % of
the sets, the medium priority has within [0 %, 5 %) differ-
ence of the response times. However, still 12 % of the sets
have a difference within [40 %, 45 %), and 14 % of the sets
have a difference within [50 %, 55 %).

From other
switches H

p—

@

-

Figure 11 Special-case example.

The same happen for the lowest priority message. The
response time in the RBS method is smaller than in the DGS
method. This says that even though the lower priority mes-
sages are delayed by the higher priority messages, still there
might be a chance to cross more than one switch in one EC
using the RBS method. Whereas, using the DGS method,
the lower priority messages are buffered in all switches in
the route of the messages.

Furthermore, we observed 0, 21 % of the sets have a neg-
ative difference [—15 %, —10 %) for the lowest priority
message. We will explain the reason for the case where the
DGS method gives better results using an example.

Let us assume that m; crosses switch H to reach node A
in Fig. 11, i.e., switch H is the last switch. Also, assume that
mg, myp and m are interfering with m in the input link, and
again m, and my, are interfering with m in the output link.

In the DGS method, we calculate the response time of
m1 considering m,, mp and m. as interfering messages in
both input and output links simultaneously. The reason is,
according to the DGS method, the message is not buffered
in the last switch and it is forwarded to the destination node
immediately when there is enough bandwidth.

In contrast, in the RBS method, according to Algo-
rithm 1, we compute the response time of m link-by-link.
Thus, we calculate the response time in the input link con-
sidering m,, mjp and m. as interfering messages. Then, we
compute the response time in the output link taking m, and
myp, as the interfering messages again, that might increase
the response time of m. This is due to the fact that, in

50
M Highest priority
45 O Medium priority
40 I Lowest priority
R 35
%]
@ 30
w
%5 25
g 20
€ 15
=2
10
. |l "
0 —_— J J —_ FI o h e
5 :\/Q\ ,\9(6)\ \f')‘g\ \Q<‘°\ o;\&\ Q’\;’)\ c)’\\’Q\ Q’\i’) o,?’Q\ Q?)(’)\ (9?9\ Q?(‘O\ of?g\ Qﬂé’)\ c)(?Q\ Q\é’)\ o,'\\Q\ Q’\\O)\ o,c\bg\ &g)\ o,?"g\ Q?’O)\
&N VX QOO

Normalized Difference between the DGS and the RBS Response Times (Diff) (%)

Figure 10 The difference between the response times in 3-switches network.

@ Springer

J Sign Process Syst

HaRTES1

HaRTES2 HaRTES3

Figure 12 Seven switches network.

the RBS method, the message can be buffered in the last
switch. However, when calculating the response time for
the output link, m, and mj; may not interfere as their effect
was already accounted for the input link and they arrived
to the destination. This leads to a pessimism in the analy-
sis which is rather complicated to solve. In fact, the analysis
requires to keep track of the interfering messages whether
they are interfering. Removing this pessimism remains for
future work.

7.1.2 Scenario 2: Seven-Switches Network

We extended the size of the network to seven switches with
seven nodes, as depicted in Fig. 12.

We generated 50000 sets, each of which containing 30
messages. Similar to the previous evaluation, the messages
are generated randomly as global and synchronous type.
The properties of the messages are similar to the previous
example. However, we set the EC size to 2ms and we allo-
cated 1500us for the synchronous window equally in all
links.

As the previous experiment, we tagged three messages in
these sets, a lowest priority, a medium priority and a highest

50
45
40
35
30
25
20

Number of Sets (%)

N2

{ O N QY \ \ o,\ Q‘ o,‘ Q‘ <5
SN AR R

priority. Then, we computed their response times according
to the DGS and the RBS methods. Again, we counted the
sets that have a normalized difference of the response times
within a certain value. Figure 13 illustrates this evaluation.

As it can be seen, compared to the smaller network with
three switches, the difference is bigger, i.e, the bars in the
figure are shifted to the right. For instance, around 33 % of
the sets have now a difference of the response times within
[80 %, 85 %) for the highest priority message. The reason
is that, when we increase the number of switches in the
route of a message, the number of occurrence of buffering is
enhancing the response time in the DGS method. Whereas,
under the RBS method the same message has a chance
to cross multiple switches in one EC, in particular for the
higher priority messages with lower interference. That is, in
fact, the reason why in Fig. 13 the difference of the response
times for the highest priority message is always greater than
50 %.

Note that, we again observed 0.016 % of the sets, where
the lowest priority message has a negative difference within
[—15 %, —10 %) which is not visible in the figure.

7.2 Comparison based on Simulation

In this section we assumed a network example with three
switches and six nodes as shown in Fig. 9. We generated
a set of 20 messages with the following parameters. We
selected the priorities of the messages based on RM policy.
The messages can share a priority level. Also, the periods of
the messages are selected within [5, 25]ECs and the dead-
lines are chosen to be equal to the periods. As the RBS and
the DGS methods are developed to handle mainly the global
messages, the generated messages in this example are all
synchronous and global. All 20 generated messages in this
simulation contain one packet, only, with transmission time
of 123us, i.e., 1500bytes payload. In this example, we set

W Highest priority
O Medium priority
@ Lowest priority

% T RN "Jﬂhﬂh

Q\%\Q\%\Q\@Q\%\Q\%\Q\Q‘%\ Q\go\@\@,\g\,\%\b\
&

S S
FESESE S S S

Normalized Difference between the DGS and the RBS Response Times (Diff) (%)

Figure 13 The difference between the response times in 7-switches network.

@ Springer

J Sign Process Syst

the EC to 1ms where we allocated 0.7ms to the synchronous
window in both methods.

In order to simulate the example we have used the sim-
ulation tool presented in [42]. However, the simulation tool
was initially developed to support the FTT-SE architectures.
Thus, we modified the tool, first to support the DGS method
in the multi-hop HaRTES architecture in [14], then we also
modified that to support the RBS method. These modifica-
tions were simplified by the fact that the tool is developed
in Simulink with a modular kernel.

Table 3 shows the messages parameters including the
period (T) and priority (P). We show the maximum
response time of the messages measured in the DGS (Sim-
DGS) and the RBS methods (Sim-RBS) in the simulation.
We also show the calculated response times using the anal-
ysis presented in this paper for the RBS method (RT-RBS),
and the analysis presented in [14] for the DGS method
(RT-DGS). We simulated the example for 50000 ECs. Note
that in the table the periods, measured response times and
calculated response times are presented in number of ECs.

As we can see from the results, the calculated response
times in both methods are always higher or equal to the mea-
sured response times. The computed response times in the
RBS method are always lower than the DGS method, except
me where both calculated response times are equal. mg has
priority of 4 and according to the previous evaluation there
are cases from the medium and low priority messages that
have the same response times.

Table 3 The messages respone time for the RBS and DGS methods.

ID T P RT-DGS Sim-DGS RT-RBS Sim-RBS
mi 12 4 6 3 4 3
my 19 7 8 5 6 3
ms3 9 3 5 3 3 2
my 25 10 5 2 3 2
ms 5 1 3 3 2 2
me 12 4 3 2 3 1
m7 7 2 2 2 1 1
mg 16 6 4 2 3 2
my 16 6 5 2 3 2
mp 9 3 4 2 3 1
mi1 14 5 4 2 3 2
mi2 21 8 6 2 4 2
mi3 25 10 10 6 5 4
mia 12 4 6 3 4 2
mis 19 7 8 5 6 3
mie 9 3 5 3 3 2
mi7 12 4 6 3 4 2
mig 21 8 5 2 3 2
mig 16 6 7 4 5 3
mao 12 4 6 3 4 3

70

M Low Priority
60 . -
Medium Priority

50 B High Priority
40

30

Number of Sets (%)

20

10 I
0

[0,30) [30,50) [50,80) [80,95)

Normalized Difference between the DGS and the RBS Minimum
Measured Response Time (%)

Figure 14 The difference between the minimum measured response
times.

Moreover, according to the simulation results, the
response times measured in the simulation in the RBS
method are lower or equal to the ones measured in the DGS
method. The measured response times are equal in the meth-
ods for the messages with lower priority, whereas for higher
priority messages the RBS method provides faster response
time, e.g., ms and m7.

7.3 Simulation on Different Architectures

In this section, we compare the RBS and DGS methods
based on the measured response time of the messages in a
set of randomly generated network architectures. We gen-
erated 50 random network architectures, where the number
of hierarchy level is chosen within [2, 4], the number of
HaRTES switches in the network is selected within [3, 7],
and the number of nodes connected to the switches is
selected within [3, 35]. Number of hierarchy level shows
the size of the architecture with respect to its depth. For
instance, the number of hierarchy level in the network
depicted in Fig. 9 is 2, one is the master switch and the other
is its children. Also, the number of hierarchy level in the

80
70 M Low Priority

Medium Priority
60 . L
| High Priority

50
40
30

Number of Sets (%)

20

10 I
0

[0,30) [30,50) [50,80) [80,95)
Normalized Difference between the DGS and the RBS Average
Measured Response Time (%)

Figure 15 The difference between the average measured response
times.

@ Springer

J Sign Process Syst

80

70 M Low Priority

Medium Priority

60 B High Priority

50
40
30

Number of Sets (%)

20
10

[0,30)

[30,50) [50,80) [80,95)

Normalized Difference between the DGS and the RBS Maximum
Measured Response Time (%)

Figure 16 The difference between the maximum measured response
times.

network depicted in Fig. 12 is 4. The nodes are randomly
attached to the switches such that each switch has at least
one node connected to.

Based on the size of the generated network, a set of
synchronous global messages is generated. The number of
messages in the set is selected within [20, 140]. The mes-
sages are assigned to the nodes randomly such that each
node in the network is a source of at least one message. The
transmission time of the messages is constant and 123 s,
i.e., each message contains one packet, only. The periods of
the messages is selected within [5, 15]ECs and the dead-
lines are chosen to be equal to the periods. Moreover, the
priority of the messages is set based on the Rate Monotonic
algorithm.

Furthermore, the capacity of the links in the generated
network is set to 100Mbps. The EC size is selected within
[1, 7]ms, where between 50 % to 80 % of that is allocated,
randomly, to the synchronous window.

We simulated each generated network for 50000 ECs in
both RBS and DGS methods. We measured the minimum,
average and maximum response time of the messages in
both methods. For each experiment (each generated network
architecture), we focused on three messages, the highest pri-
ority, medium priority, and the lowest priority. We derived

the normalized difference of the measured response times
in both methods for the three messages, using the expres-
sion (11). Figure 14 illustrates the normalized difference
of the minimum measured response times of the messages
in the RBS and DGS methods. Similar to the comparison
illustration in Section 7.1, the x-axis shows the normalized
difference within a certain values, from 0 % to 95 %. Also,
y-axis shows the number of sets that have the normalized
differences within the specific range.

As it can be seen in the figure, all normalized differences
for the three messages are positive, which means that in all
generated experiments the RBS method delivers the mes-
sages faster than the DGS methods. Moreover, among the
measured messages, the highest priority message has the
biggest difference. This shows that RBS method performs
better for high priority messages, as it was concluded in the
previous section. For instance, around 33 % of the sets has
the normalized difference of minimum measured response
times within [80, 95] % for the highest priority message.

Figures 15 and 16 show the normalized differences of
the average and maximum response times, respectively. The
behavior follows the same way as the one described for
Fig. 14. Moreover, the pattern of the figures is similar to
the ones depicted in Figs. 10 and 13, that can validate our
experiment comparison based on the response time analysis.
However, in the simulation, we could not find any nega-
tive normalized difference of response times, which means
that we could not capture any experiment in which the DGS
method performs better than the RBS method.

8 Hardware Changes for Supporting the RBS

Figure 1 depicts the internal structure of the HaRTES
switch. Looking more closely to the synchronous part of
the output ports, it can be seen that the synchronous mes-
sages are held in FIFO queues since the dispatched traffic
fits in one EC. However, as presented in this section, in
interlink output ports, traffic has no such guarantees and can

ra

NRT traffic M

Classifier jr

Input

Asynchronous traffic

Output

_/}

Ports

N

Ports

input
ports

Queueing
Mux

>
SRDB j

i Sync Queues
E (k priority levels)

Synch
Dispatcher

Figure 17 Modified switch architecture.

@ Springer

Synchronous Traffic

J Sign Process Syst

Figure 18 Experiment setup.

mmammae awwwawe
mguan wuwaw -m

mmmmdn wmawww
mmmusn wsmwes

)

[n2]

accumulate from EC to EC. In this scenario the use of FIFO
queues would lead to a poor real-time performance, due to
priority inversions. For this reason, in the RBS method, the
output ports use priority queues.

The HaRTES switch is implemented in FPGA tech-
nology. To allow wire speed treatment of the incoming
messages, all functionalities directly associated with the
internal message handling (e.g. classification, policing, for-
warding) are implemented in hardware. Priority queues can
be trivially implemented in software, but in hardware the
case is completely different. There are many alternatives
that present different tradeoffs between performance and
resource utilization [43].

Several options have been considered and that the one
actually implemented presents a balance between several
requirements. In particular, the packet processing takes less
time than the reception time of a minimum-size Ethernet
frame, thus enabling wire speed operation, and the amount
of required resources (logic blocks and memory) is limited
and configurable, being proportional to the needed priority
levels.

Figure 17 shows the internal architecture of the output
port management. To make the figure more readable, it is
represented only one output port. Moreover, only the syn-
chronous packet management block is detailed. Real-time
asynchronous packets are handled in the same way as the
synchronous ones and NRT traffic is put in a single FIFO
queue. Firstly, as in all ports, there is a packet classifier that
inspects the incoming packets and determines its class (syn-
chronous, asynchronous and non real-time). Then, real-time
traffic (both synchronous and asynchronous) is processed
by a block called “Queuing Mux”. This block checks the
priority of each packet, stored in the System Requirements
Database (SRDB) and places it in the appropriate queue
(i.e., the one that corresponds to the message priority). Note
that messages with different priorities are placed in different
queues, thus each individual queue is handled in FIFO order.
As for normal ports, there is also a dispatcher. However, in
addition to check for the current EC phase, the dispatcher
also has to process each one of the queues according to its

(
[n3]

priority. To achieve this goal, the dispatcher processes the
queues in a given predefined order, which corresponds to the
queue priorities. The dispatcher only moves to a different
queue when all the higher priority ones are empty.

The amount of resources depends on the number of mes-
sages and priorities. In particular, each implemented priority
level requires the static allocation of a portion of memory
sufficiently high to hold the (eventually) several pointers to
messages waiting in the queue. Thus, the total amount of
memory may easily become unbearable. For this reason it
was decided to associate explicitly each queue with a spe-
cific priority level. This scheme allows creating only the
needed amount of queues, thus saving resources.

9 Experimental Validation
For this evaluation we defined a network consisting of three

switches and three nodes, connected in a topology shown in
Fig. 18.

Table 4 The messages parameters for the prototype experiment.

ID T P S Ds ID T P S

S
=)

mi 20 6 3 1 mie 18 5 3 2
my 20 6 1 3 mi7 15 4 2 3
ms3 25 7 3 1 mig 15 4 3 2
my 15 4 3 2 miog 20 6 3 2
ms 10 2 3 2 mao 10 2 2 3
me 15 4 3 2 my| 18 5 3 2
m7 10 2 2 1 my) 25 7 3 2
mg 20 6 3 2 mo3 18 5 3 2
mo 12 3 2 3 mo4 5 1 3 1
mio 5 1 3 1 mys 15 4 2 3
mi 15 4 2 1 mae 15 4 2 3
mia 10 2 3 1 my7 18 5 1 2
mi3 15 4 3 2 mog 10 2 1 2
mi4 18 5 3 2 moo9 10 2 2 1
mis 25 7 3 1 msg 10 2 3 2

@ Springer

J Sign Process Syst

H minRT W avgRT

10

Response Time (EC)
N w £} (5]

[=Y

B maxRT calculatedRT

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ID of Messages

Figure 19 The minimum, average, maximum measured and computed response times.

In this experiment the capacity of the links is 100Mbps.
Currently, the HaRTES switch implementation uses netF-
PGA boards with four ports per switch, that are used
for inter-links and local-links. According to the extensive
measurements reported in [44], the fabric latency of the
HaRTES switch varies between 2us and 2.4us, with an
average of 2.2us.

We set the EC size to 1ms and we allocated 700us for the
synchronous window. Also, we generated 30 synchronous
global messages with only one packet and 123us trans-
mission time. The message periods are uniformly selected
within [5, 25] ECs and the priority is assigned based on Rate
Monotonic policy. Table 4 shows the message parameters
including the period (T'), priority (P), source node (S) and
destination node (D).

We measured the response time of the messages during
60000 ECs. In Fig. 19, we show the minimum, average and
maximum values of the measured response times (minRT,
avgRT, maxRT). Note that the measured response times are
expressed in number of EC, thus, due to this coarse reso-
lution, it may happen that the average and the maximum
are equal. Moreover, we calculated the response time of
the messages using the presented analysis in this paper.
The computed response times (calculatedRT) are also illus-
trated in Fig. 19 to show the difference of the measured and
computed values.

Analyzing Fig. 19, we can see that the measured response
times are lower or equal than the response time predicted
by the analysis. It can also be observed that the analysis
embodies a certain degree of pessimism, as discussed in
Section 6. As expected, the degree of pessimism depends
on the message priority and number of hops. For instance,
the difference between the predicted and observed response
times for messages with priority 1 and 2 is at most 1 ECs,

@ Springer

while for messages with priority 6 and 7 this difference
varies between 2 and 5 ECs.

We believe that the pessimism in the analysis stems from
several sources. We discuss these sources herein, however a
detail study of the pessimism and the solutions for them are
not discussed in this paper and remained as future work.

The first source of the pessimism is related to the phasing
of the messages. According to Eq. 8, all higher and equal
priority messages that share links with the message under
analysis are taken into account for calculation. However,
due to different phasing the messages may not interfere in
the shared link. Assume the network example depicted in
Fig. 18. Also, assume that two messages, m from node n2
to n3 and m, from node nl to n3, have share link in the
interlink between switch H1 and switch H3. Although they
have share links, in practice, m, can be received by switch
H3 while m is buffered in switch H1, hence they do not
interfere.

The other source is related to the idle time calculation.
We considered the largest packet to compute the idle time in
Eq. 5. However, the idle time may occur for smaller packets
in reality.

10 Conclusion and Future Work

This work addressed the problem of supporting real-time
multi-hop traffic in HaRTES architectures. Recently, we
developed two forwarding methods, namely DGS, based on
buffering, and RBS, based on immediate forwarding. In this
paper we establish the superiority of RBS, which allows a
significant reduction of the end-to-end response times and
we showed how it can be efficiently implemented within
HaRTES.

J Sign Process Syst

Concerning the RBS versus DGS comparison, we first
compared their performance applying the response time
analysis of each method on two different networks. We
have shown that the response time of the highest priority
messages is always smaller using the RBS method and the
response time of the lowest and medium priority messages
is equal or, in most of cases, smaller than when applying
the DGS method. We have also shown that this difference
increases for larger networks. Secondly, we modified a sim-
ulation tool to support the RBS method. We compared the
response time of a set of messages in the RBS and the DGS
methods by means of simulation. Moreover, we generated
random network architectures with random set of messages
to validate our conclusion from the response time compar-
ison in different network architectures. Finally, we experi-
mentally validated the RBS method with an actual prototype
implementation. Our future work aims at removing some
pessimism and we also aim at using this real-time multi-
hop framework to provide end-to-end resource reservation
in large Ethernet networks.

Acknowledgments This work is supported by the Swedish Foun-
dation for Strategic Research via the PRESS project. Also, it is
partially supported by the Portuguese Government through FCT grants
Serv-CPS PTDC / EEA-AUT / 122362 / 2010.

References

1. Decotignie, J.-D. (2005). Ethernet-based real-time and industrial
communications. Proceedings of the IEEE, 93(6), 1102-1117.

2. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., & Varadarajan, S.
(2009). TTEthernet dataflow concept. In 8th IEEE International
Symposium on Network Computing and Applications.

3. Hanzalek, Z., Burget, P., & Sucha, P. (2009). Profinet IO IRT
message scheduling. In 2/st Euromicro Conf. on Real-Time Sys.
(ECRTS).

4. IEEE (2011). IEEE Std. 802.1as-2011, iecee standard for local
and metropolitan area networks-timing and synchronization for
time-sensitive applications in bridged local area networks. /EEE,
Technical Report.

5. IEEE (2011). IEEE Std. 802.1qat, ieee standard for local and
metropolitan area networks, virtual bridged local area networks,
amendment 14: Stream reservation protocol. IEEE, Technical
Report.

6. IEEE (2011). IEEE Std. 802.1qav, ieee standard for local and
metropolitan area networks, virtual bridged local areanetworks,
amendment 12: Forwarding and queuing enhancements for time-
sensitive streams. IEEE, Technical Report.

7. Gomez-Molinero, F. (July 2007). Real-time requirement of media
control applications. In 19th Euromicro Conference on Real-Time
Systems (ECRTS).

8. Cho, C.-S., Chung, B.-M., & Park, M.-J. (2005). Devel-
opment of real-time vision-based fabric inspection system.
IEEE Transactions on Industrial Electronics, 52(4), 1073-—
1079.

9. Kumar, A. (2008). Computer-vision-based fabric defect detection:
A survey. IEEE Transactions on Industrial Electronics, 55(1),
348-363.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Hwang, C.-L., & Shih, C.-Y. (2009). A distributed active-vision
network-space approach for the navigation of a car-like wheeled
robot. IEEE Transactions on Industrial Electronics, 56(3), 846—
855.

Lim, H.-T., Volker, L., & Herrscher, D. (2011). Challenges in
a future IP/Ethernet-based in-car network for real-time appli-
cations. In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE.

Lim, H.-T., Weckemann, K., & Herrscher, D. (2011). Performance
study of an in-car switched ethernet network without prioriti-
zation. In Proceedings of the Third international conference on
Communication technologies for vehicles. Springer.

Santos, R., Behnam, M., Nolte, T., Pedreiras, P., & Almeida, L.
(2011). Multi-level hierarchical scheduling in ethernet switches.
In Proceedings of the International Conference on Embedded
Software (EMSOFT).

Ashjaei, M., Pedreiras, P., Behnam, M., Bril, R.J., Almeida, L.,
& Nolte, T. (2014). Response time analysis of multi-hop HaRTES
ethernet switch networks. In 9th International Workshop on Fac-
tory Communication Systems (WFCS).

Ashjaei, M., Behnam, M., Pedreiras, P., Bril, R.J., Almeida, L.,
& Nolte, T. (2014). Reduced buffering solution for multi-hop
HaRTES switched Ethernet networks. In The 20th IEEE Inter-
national Conference on embedded and Real-Time Computing
Systems and Applications (RTCSA).

Pedreiras, P., & Almeida, L. (2005). The Industrial Communica-
tion Systems Handbook. CRC Press, ch. Approaches to Enforce
Real-Time Behavior in Ethernet, ISBN: 0-8493-3077-7.
Varadarajan, S., & Chiueh, T. (1998). EtheReal: a host-transparent
real-time fast ethernet switch. In 6th International Conference on
Network Protocols.

Hoang, H., & Jonsson, M. (2003). Switched real-time ethernet in
industrial applications - deadline partitioning. In 9th Asia-Pacific
Conference on Communications (APCC).

(2013). EPSG Draft Standard 301 Ethernet POWERLINK Com-
munication Profile Specification Version 1.2.0, Ethernet POWER-
LINK Standardisation Group.

(2010). IEC 61158, industrial communication networks - Fieldbus
specifications.

Carvajal, G., Figueroa, M., Trausmuth, R., & Fischmeister, S.
(2013). Atacama: An open FPGA-Based platform for mixed-
criticality communication in multi-segmented Ethernet networks.
In 21st Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM).

Alderisi, G., Patti, G., & Bello, L. (2013). Introducing support
for scheduled traffic over IEEE audio video bridging networks.
In 18th IEEE Conference on Emerging Technologies Factory
Automation (ETFA).

Time-sensitive networking task group, available at http://www.
ieee802.org/1/pages/tsn.html.

Marau, R., Almeida, L., & Pedreiras, P. (2006). Enhancing
real-time communication over COTS Ethernet switches. In 6th
1IEEE International Workshop on Factory Communication Systems
(WFCS).

Santos, R., Vieira, A., Pedreiras, P., Oliveira, A., Almeida, L.,
Marau, R., & Nolte, T. (2010). Flexible, efficient and robust real-
time communication with server-based Ethernet switching. In 8th
IEEE International Workshop on Factory Communication Systems
(WFCS).

Ashjaei, M., Behnam, M., Almeida, L., & Nolte, T. (2013). Per-
formance analysis of master-slave multi-hop switched ethernet
networks. In 8th IEEE Int. Symp. on Industrial Embedded Systems
(SIES).

Mifdaoui, A., Frances, F., & Fraboul, C. (2010). Performance
analysis of a master/slave switched ethernet for military embedded

@ Springer

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html

J Sign Process Syst

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

applications. IEEE Transactions on Industrial Informatics, 6(4),
534-547.

Zhang, M., Shi, J., Zhang, T., & Hu, Y. (2008). Hard real-time
communication over multi-hop switched ethernet. In The IEEE
Int. Conference on Networking, Architecture, and Storage (NAS).
Charara, H., Scharbarg, J.-L., Ermont, J., & Fraboul, C. (2006).
Methods for bounding end-to-end delays on an AFDX network. In
18th Euromicro Conference on Real-Time Systems(ECRTS).
Bauer, H., Scharbarg, J.-L., & Fraboul, C. (2010). Improving the
worst-case delay analysis of an AFDX network using an optimized
trajectory approach. IEEE Transaction on Industrial Informatics.
Kemayo, G., Ridouard, F., Bauer, H., & Richard, P. (2013). Opti-
mistic problems in the trajectory approach in fifo context. In
18th IEEE Conf. on Emerging Technologies Factory Automation
(ETFA).

Li, X., Cros, O., & George, L. (2014). The trajectory approach for
AFDX FIFO networks revisited and corrected. In The 20th IEEE
International Conference on embedded and Real-Time Computing
Systems and Applications (RTCSA).

Queck, R. (2012). Analysis of Ethernet AVB for automotive net-
works using network calculus. In /EEE International Conference
on Vehicular Electronics and Safety (ICVES).

Manderscheid, M., & Langer, F. (2011). Network calculus for the
validation of automotive ethernet in-vehicle network configura-
tions. In International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC).

Bordoloi, U.D., Aminifar, A., Eles, P., & Peng, Z. (2014). Schedu-
lability analysis of ethernet AVB switches. In The 20th IEEE
International Conference on embedded and Real-Time Computing
Systems and Applications (RTCSA).

Lenzini, L., Martorini, L., Mingozzi, E., & Stea, G. (2006). Tight
end-to-end per-flow delay bounds in FIFO multiplexing sink-tree
networks. Elsevier Performance Evaluation, vol. 63.

Schmitt, J., Zdarsky, F., & Fidler, M. (2008). Delay bounds under
arbitrary multiplexing: When network calculus leaves you in the
lurch... In The 27th IEEE Conference on Computer Communica-
tions.

Lenzini, L., Martorini, L., Mingozzi, E., & Stea, G. (2006). A
novel approach to scalable CAC for real-time traffic in sink-tree
networks with aggregate scheduling. In The 1st ACM international
conference on Performance evaluation methodolgies and tools.
Ashjaei, M., Behnam, M., Rodriguez-Navas, G., & Nolte, T.
(2013). Implementing a clock synchronization protocol on a
multi-master switched ethernet network. In 18th Conference on
Emerging Technologies Factory Automation (ETFA).

Gessner, D., Proenza, J., Barranco, M., & Portugal, P. (2014).
Towards a reliability analysis of the design space for the communi-
cation subsystem of ft4ftt. In /9th IEEE International Conference
on Emerging Technology and Factory Automation (ETFA).
Gessner, D., Proenza, J., & Barranco, M. (2014). A proposal for
managing the redundancy provided by the flexible time-triggered
replicated star for ethernet. In 10th IEEE Workshop on Factory
Communication Systems (WFCS).

Ashjaei, M., Behnam, M., & Nolte, T. (2012). The design and
implementation of a simulator for switched ethernet networks. In
3rd International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS).

Huang, M., Lim, K., & Cong, J. (2014). A scalable, high-
performance customized priority queue. In 24th International
Conference on Field Programmable Logic and Applications.
Santos, R. (2010). Enhanced Ethernet Switching Technology for
Adaptive Hard Real-Time Applications. PhD Thesis, University of
Aveiro, Aveiro, Portugal.

@ Springer

Mohammad Ashjaei is a PhD
student at Mailardalen Uni-
versity since April 2012. He
studied Electrical Engineering
in Tehan, Iran and received
his B.Sc. in 2003. He has
been working for many pri-
vate companies as a hardware
programmer. Then, Moham-
mad moved to Sweden in
2010 and studied computer
science with emphasize on
real-time embedded systems
at Milardalen University. He
received his M.Sc. degree in
2012 and in the same year he
started his PhD studies in the same University. Mohammad was a visit-
ing researcher at University of Aveiro, Portugal, for one month in 2013.
His main research interests are real-time distributed systems, response
time analysis, modeling and development of related algorithms.

Luis Silva was born in Por-
tugal on July 25, 1987. He
received the M.Sc. degree in
electronics and telecommuni-
cations engineering from the
University of Aveiro, Portu-
gal, in 2010. He is cur-
rently a Ph.D. student on
the 2013/2014 MAP-Tele doc-
toral program in telecommu-
nications, a joint venture of
three Portuguese universities:
Minho, Aveiro and Oporto. He
is also a researcher at the
Institute for Telecommunica-
tions, Aveiro, Portugal. His
main research interests include distributed embedded systems, real-
time networks and cooperative intelligent transportation systems.

Moris Behnam has awarded
a B.Eng., and M.Sc. in Com-
puter and Control Engineer-
ing at the University of Tech-
nology, Iraq, and also MS.c.,
Licentiate, and PhD in Com-
puter Science and Engineer-
ing at MDH, Sweden, in 1995,
1998, 2005, 2008 and 2010
respectively. Moris has been
a visiting researcher at Wayne
State University, USA in 2009
and he has been a Postdoc-
toral Researcher at Univer-
sity of Porto in 2011. His
research interests include real-
time scheduling, synchronization protocols, multicore/multiprocessor
systems, distributed embedded real-time systems and using control
theories in real-time scheduling.

J Sign Process Syst

Paulo Pedreiras was born
in Aveiro, Portugal, in 1967.
He graduated in Electron-
ics and Telecommunications
Engineering, in 1997, and
received the Ph.D. degree in
Electrotechnical Engineering,
in 2003, at the University
of Aveiro, Portugal. He cur-
rently is Assistant Professor
at the Electronics, Telecom-
munications and Informatics
Department of the University
of Aveiro, Portugal. He is also
affiliated with the Portuguese
Telecommunications Institute,
Aveiro site. He has been involved, as a researcher, in 12 national and
European research projects and has been the principal investigator
of two national projects. His current research interests include real-
time systems, networked embedded systems, real-time communication
protocols, industrial communications, wireless communications, intel-
ligent transportation systems and robotics. Since 2000 he has authored
or co-authored more than 100 papers in international peer-reviewed
journals and conferences. He participates regularly on the technical
program committees of some of the major events of his research area,
such as WFCS, SIES and ETFA. He collaborates regularly, as reviewer,
in several top international journals such as IEEE Transactions on
Industrial Informatics, IEEE Transactions on Industrial Electronics,
Journal of Systems Architecture (Elsevier) and Springer Real-Time
Systems Journal. He has been the Program Co-Chair of APRES 2012,
WiP Co-chair of WFCS 2012, PC Co-chair of WFCS 2015 and mem-
ber of the local organizing committee of several national scientific
events.

Reinder J. Bril received a
B.Sc. and a M.Sc. (both with
honors) from the University
of Twente, and a Ph.D. from
the Technische Universiteit
Eindhoven, the Netherlands.
He started his professional
career in January 1984 at
the Delft University of Tech-
nology. From May 1985 till
August 2004, he has been
with Philips, and worked in
both Philips Research as well
as Philips’ Business Units.
He worked on various top-
ics, including fault tolerance,
formal specifications, software architecture analysis, and dynamic
resource management, and in different application domains, e.g. high-
volume electronics consumer products and (low volume) professional
systems. In September 2004, he made a transfer back to the academic
world, i.e. to the System Architecture and Networking (SAN) group
of the Mathematics and Computer Science department of the Technis-
che Universiteit Eindhoven. His main research interests are currently
in the area of reservationbased resource management for networked
embedded systems with real-time constraints.

Luis Almeida graduated in
Electronics and Telecommu-
nications Eng. in 1988 and
received a Ph.D. in Electri-
cal Eng. in 1999, both from
the University of Aveiro in
Portugal. He is currently an
associate professor in the
Electrical and Computer Engi-
neering Department of the
University of Porto (UP), Por-
tugal, and a senior researcher
in the Telecommunications
Institute at UP where he coor-
dinates the Distributed and
Real-Time Embedded Sys-
tems (DaRTES) lab. Among
several appointments, he was a member of the IEEE Technical
Committee on Real-Time Systems (2008-2013), Program and Gen-
eral Chair of the IEEE Real-Time Systems Symposium (2011-2012
respectively) and Vice-President of the RoboCup Federation (2011-
2013) being Trustee of this organization since 2008. His research
interests include those related to real-time networks for distributed
industrial/embedded systems including for teams of mobile robots.

Thomas Nolte was awarded
a B.Eng., M.Sc., Licentiate,
and Ph.D. degree in Computer
Engineering from Mailardalen
University (MDH), Visteras,
Sweden, in 2001, 2002, 2003,
and 2006, respectively. He has
been a Visiting Researcher
at University of California,
Irvine (UCI), Los Angeles,
USA, in 2002, and a Vis-
iting Researcher at Univer-
sity of Catania, Italy, in 2005.
He has been a Postdoctoral
Researcher at University of
Catania in 2006, and at MDH
in 2006-2007. Thomas Nolte
became an Assistant Professor at MDH in 2008, and Associate Pro-
fessor at MDH in 2009. 2012 he became Full Professor of Computer
Science.

@ Springer

	Improved Message Forwarding for Multi-Hop HaRTES Real-Time Ethernet Networks
	Abstract
	Introduction
	Problem and Contributions
	Overview

	Related Work
	Overview of RTE Protocols
	Timing Analysis Approaches

	HaRTES Architecture
	HaRTES Switch Structure
	HaRTES Traffic Scheduling

	Multi-Hop HaRTES Architecture
	Multi-Hop HaRTES Topology
	Distributed Global Scheduling
	Reduced Buffering Scheme

	System Model
	Response Time Analysis for RBS
	Response Time Analysis for Synchronous Messages
	Response Time Analysis for Asynchronous Messages
	Single-Switch Response Time Analysis
	Algorithm Complexity

	RBS and DGS Comparison
	Comparison based on the Response Time Analysis
	Scenario 1: Three-Switches Network
	Scenario 2: Seven-Switches Network

	Comparison based on Simulation
	Simulation on Different Architectures

	Hardware Changes for Supporting the RBS
	Experimental Validation
	Conclusion and Future Work
	Acknowledgments
	References

