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Abstract—Many real-time systems tolerate, up to some extent,
that instances of their tasks are skipped or miss their deadlines.
In such cases it is possible to increase the system schedulability
by dropping some jobs. However, the number and temporal
distribution of such drops must be constrained, in order to
bound its impact on the system performance. The (i, k)-firm
model, which specifies that at least m out of any k& consecutive
jobs are scheduled, captures such constraints and has been
a topic of interest of the scientific community over the last
few years. Many advances in the implementation of this type
of schedulers were made. However, the (m, k)-firm schedulers
hitherto proposed in literature either do not provide deterministic
(m, k)-firm guarantees or are not efficiently scheduled. In this
paper it is presented a (m,k)-firm scheduler that provides
deterministic (m, k)-firm guarantees and is capable of scheduling
task sets that are deemed unschedulable by current approaches.
The proposed scheduler works by dynamically changing the
underlying (m, k)-firm frames. Examples of task sets that are
schedulable by the scheduler proposed in this paper but that not
schedulable by any other scheduler described in the literature
are presented.

I. INTRODUCTION

Many real-time systems allow occasional deadline viola-
tions or even the non-execution of some of its task’s jobs.
Classical examples of such systems are encoded video pro-
cessing and control applications. A simple form of specifying
the degree of tolerance of an application to such faults consists
in the indication of an average fault ratio. Tough simple, such
specification is not rich enough, since it does not capture the
temporal distribution of the faults. For instance, most control
applications are robust enough to cope with the omission
of one sensor sample every ten sampling periods, without
incurring a serious performance degradation. However, such
systems may easily become unstable if, during a window
of 100 sampling periods, 10 consecutive sensor omissions
are experienced. To address this lack of expressiveness, it
was proposed in the literature the (m, k)—~firm model, which
indicates that at least m out of any k consecutive jobs shall
be correctly executed. In addition to the specification of an
acceptable fault ratio, this model constraints the maximum
time interval between any two consecutive correct jobs. This

This work was partially supported by the Portuguese Government
through FCT - Fundacao para a Ciencia e a Tecnologia in the scope
of project Serv-CPS -PTDC/EEA-AUT/122362/2010 and Ph.D. grant -
SFRH/BD/62178/2009/153651387T4E

Paulo Bacelar Reis Pedreiras
DETUIT/ University of Aveiro
Aveiro, Portugal
pbrp@ua.pt

increased degree of expressiveness suits the needs of many
application domains and, for this reason, the (m,k)-firm
model has been a topic of interest of the scientific community
over the last few years.

(m, k)-firm schedulers can be classified either as proba-
bilistic or deterministic. Probabilistic (m, k)—firm schedulers
try to reduce the amount of time in which the (m,k)-firm
guarantees are not met, but its primary goal is to ensure
that on average m out of k job executions are met. Such
approach may have deleterious effects on the scheduled tasks
since does not bound the number of consecutive jobs that
may be skipped. On the other hand, deterministic (i, k)—firm
schedulers guarantee that for any group of k consecutive jobs
at least m are executed. However, the deterministic schedulers
that have been presented so far in the literature suffer from
a common illness, which consists in the need to actually
reserve computational resources according with a (k, k)—firm
requirement, when worst-case conditions are considered [1].
Therefore, in this scenario, there is no effective reduction on
processing requirements.

This paper presents a new (m, k)—firm scheduler that does
not require a (k,k)-firm reservation, and thus that is able
to schedule task sets that are unschedulable by classical
(m, k)—firm schedulers. The scheduler is dynamic in the sense
that the selection of which jobs are executed does not depend
only on the priority of the tasks to which they belong, but
also of the past executions. In a certain sense it can be
said that priorities are associated with jobs as opposed to
tasks. It is shown that all task sets that are schedulable by
classical schedulers are also schedulable by the scheduler
presented herein, while the opposite is not true. Furthermore,
the scheduler proposed in this paper allows attaining higher
utilizations for task sets that are schedulable by classical
(m, k)—firm schedulers.

This paper is organized as follows: Section II presents a
review of the state of the art of the field. Section III revisits
the static (m, k)~firm frames, which are presented under a new
light that leads to the main contribution of the paper, which
is presented in Section IV. Section V contains a number of
examples that allow a better understanding of the working
principles of the proposed scheduler. Section VI makes a
comparison of the new scheduler with classical ones. Section
VII presents the concluding remarks.
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II. RELATED WORK

In [2] it is proposed a scheduler that divides the task’s jobs
into mandatory and optional ones. Each frame of % jobs should
have m mandatory jobs. Jobs are set as mandatory or optional
based on an upper mechanical word. The generated frames
have an evenly distributed mandatory activation pattern. In
[3], it was proposed one of the first alternative mandatory job
assignment scheme. A similar contribution was given in [4],
in which it was proposed that the mandatory job assignments
should minimize a certain metric, dubbed Granularity of
Quality of Service-Reward (GQoS-reward). These approaches
were in total contrast with the use of distance to failure, which
was the de facto approach to realize (in,k)—firm schedulers.

In [5], it was proved that the scheduler in [2] introduces a
periodic critical moment, one of which is at ¢ = 0. Thus,
the even distribution of mandatory jobs is not necessarily
the best. Three different algorithms for finding a suitable
schedule for the mandatory tasks, that differ primarily in their
computational efficiency, were propose. The first resembles
a test of all possible schedules, the second is a genetic
algorithm and the third one introduces a metric that drives the
search parameters of the genetic algorithm. Notwithstanding
the exhaustive nature of the proposed algorithm, in general it
fails to reach the optimal schedule because, as will be shown
latter on in this paper, the search space of the algorithm is
smaller than the solution space. Furthermore, the solutions
that the paper proposes are still haunted by the problem that
it intended to solve, namely, the proposed scheduler also
introduces periodical critical instants.

A different type of static pattern was presented in [6], the so
called Deeply Red (or R-) pattern, which is defined by setting
all jobs that verity 7; modk; < m; as mandatory, where j;
is an integer that is incremented by one whenever a job from
the 7; is released. If j, mod k; = 0 at the release of the first
job of the task, then the generated sequence will consist of m;
mandatory jobs in the beginning of the cycle. j; introduces a
phase, but it is impossible to escape from a critical instant in
the general case, where there is no special relation between
the task’s periods.

It was proved in [7] that if a given (m,k)-firm task set is
schedulable using a Deeply Red pattern then it is schedulable
using any other static % jobs frame with m job activations. This
is not the same as optimality, which implies that if exists a
scheduler that can schedule a given system then the proposed
scheduler can also schedule the system in question. In fact,
[7] proves that there is no static (m,k)-firm scheduler that
performs worse than the Deeply Red pattern.

In [1] it is noted this limitation regarding the provisioning
of deterministic (m,k)-{firm guarantees using static frames
of length k& with m job activations and is argued that the
deterministic approach “does not contribute to reducing the
resource requirements in general”’. Due to 1) static frames
introduce critical instants, 2) tasks with implicit deadlines
can be scheduled on a critical instant if the task set is
also EDF-schedulable, therefore, 3) all task sets that provide

deterministic guarantees are EDF-schedulable. However, this
reasoning is based on the assumption that [2], [5] and other
contemporary (i, k)—firin schedulers are optimal. But, as will
be shown, contemporary schedulers are suboptimal since they
introduce critical instants.

Regarding the implementation end of the field, one of the
first papers to tackle the problem of (m,k)-firm scheduling
[8] presented a scheme in which messages were supposed to
achieve probabilistic (m, k)—firm guarantees by attributing to
each task a distance to failure with higher priorities being
attributed to tasks with lower distances, i.e., close to failure.
The distance to failure is the number of future consecutive
jobs that had to not be executed in order to put the task
in a dynamical failure. In case of a draw, i.e., several tasks
with the same difference to failure, the choice is EDF based.
This approach was dubbed Distance Based Priority (DBP). A
similar approach was put forth in [9], in which an (mn, k)—firm
model for wireless networks was presented. It had some
aspects relevant to wireless networks, e.g., the distance to the
sink (signal strength). A similar probabilistic approach was
first proposed in [10].

Other variants of DBP include Integrated DBP (IDBP) [11],
which also used the distance to recovery upon failure, that
significantly reduces the domino effect in which, as in EDF,
the failure in one job/task is propagated into other jobs/tasks.
Matrix-DBP [12] also uses the distance to failure to schedule
message streams, but differs at a fundamental level from other
variants since it cannot be preemptive. It employed a rather
large set of other variables such as periods, service (execution)
time and relationship between streams. An expanded version
of the matrix-DBP into the (E_matrix) DBP, which allows for
non-periodical messages, was presented in [12]. Similarly, [13]
improves upon DBP by introducing Total BDP (TDBP) which
introduces a total distance to failure that include other relevant
parameters, such as distance to enter invalidation (dynamic
failure) and to exit it, which in much resembles the goals of
IDBP [11].

In [14], it is presented a multiprocessor implementation of
a protocol of the DBP family, as well as an analysis of its
probability of being in a dynamic failure. In [15] it is proposed
a protocol called Local DBP (L-DBP) which has the goal of
providing (m, k)-firm guarantees to multimedia streams over
wireless sensor networks. It works by augmenting the distance
of DBP with local node information regarding link congestion
and failure rates.

In [16], it is discussed the possibility of performing an
online schedulability test that admits optional jobs if and only
if it can be assured that they will not cause a mandatory job
to miss a deadline. This is further enforced by putting the
jobs into two different execution queues: a high priority queue
for mandatory jobs and a low priority one for optional jobs,
with jobs from the low priority queue executing if and only if
the high priority queue is empty. The proposed schedulability
test is not tight. The approach presented in this paper also
uses a schedulability test. However, the proposed approach is
less restrictive in the sense that optional jobs are allowed to



interfere with mandatory ones for as long as they do not cause
a deadline miss.

In [17] it is presented the approach most similar to the one
presented herein. The authors use the time to failure combined
with deadline awareness to mitigate some of the issues related
to the original DBP. Two algorithms are presented. The
guaranteed on-line scheduling algorithm (GDPA) is the most
powerful and complex one, while the other one is a lightweight
version of it. In GDPA it is decided to put a given job in
the execution queue based on the local (temporal) state of
the queue. Thus, it can put jobs that have long distances to
failure in the queue, as long as there are no jobs of tasks with
lower distances at that moment. However, it is possible that
in the following scheduling instants jobs from tasks close to
a dynamic failure are released and eventually may fail their
deadline. An example of this effect is explored in-depth in
Section V.

Applications of (m, k)—firm scheduling in industrial control
are presented, for example, in [18] in which the fact that
many control applications are resilient to a small number
of failures is used to reduce the resource usage. Controller
modifications are also discussed. In [19] the graceful QoS
degradation provided by (m, k)-firm scheduling is explored.
More concretely, DBP is analyzed and sufficient, though not
tight, conditions for deterministic schedulability and their
applications for control purposes were proposed. [20] tries
to devise an optimal (i, k)-firm frame for control purposes.
However, no consideration regarding the schedulability of
the resulting (m, k)-firm sequence was made, which could
invalidate the underlying assumptions. In fact, this is a general
issue regarding the utilization of contemporary (m,k)—{irm
schedulers for industrial applications.

In [21] it is presented a study of the application of
(m, k)—firm schedulers in multimedia settings, with a special
focus on DBP. Multimedia is one of the areas in which
(m, k)—firm scheduling has the potential to provide consider-
able improvements, as can be attested in [21] and references
therein. For example, for the JPEG video case, there are
two types of frames. The most important ones are designated
key frames and are used to decode the other less important
frames. Thus, key frames must always be decoded, which
conflicts with many dynamic schedulers, because dynamic
schedulers do not provide guarantees regarding which job will
be executed. For example, DBP only considers the distance to
failure, neglecting the importance of the underlying frames.

ITI. STATIC (CIRCULAR) (M,K)-FIRM SCHEDULERS

This section generalizes some theorems in the literature.
The first theorem generalizes the theorem proved in [2] that
states that upper mechanical (m,k)-firm frames generate
(m, k)-firm sequences that always meet the respective guar-
antees. The theorem is generalized for any frame with the
respective size and number of mandatory jobs. The second
theorem helps to understand the periodic nature of (i, k)—firm
sequences. In [5] is proven that the use of the Chinese reminder
algorithm can be used to schedule (m, k)-firm task sets. The

theorem is generalized to allow any algorithm that handles
periodically repeating activation patterns. This is of uttermost
importance because the Chinese reminder algorithm is known
to be NP-hard, i.e., it cannot be solved in polynomial time.
These theorems will in turn be fundamental at establishing
the improvements of the dynamical scheduler proposed in this
paper. But before that, a number of definitions are in order.

Definition. An (m, k)-firm frame is any group of k bits in
which m and only m bits are ones.

Definition. A job is optional if the rightmost bit of its
(m, k)-firm frame is zero, otherwise the job is mandatory.

Definition. An (m,k)-firmn sequence is any sequence of job
executions in which for any group of k consecutive job
activations, at least m are executed.

Furthermore, in this analysis it is made a number of as-
sumptions:
« An Optional job is executed if and only if its execution
does not cause the miss of a deadline of a mandatory job.
« An Optional job is executed if and only if it will be able
to complete its execution within its respective deadline.
o Whenever a job is released, regardless of being executed
or not, unless some pattern breaking event occurs, the
whole (m, k)—{irm frame associated with it is rotated one
bit to the left.
o Tasks release jobs periodically, regardless of the job’s
priority.
The next theorem helps to understand the name (i, k)—firm
frame

Theorem 1. Any (i, k)-firm frame generates an (m, k)-firm
sequence.

Proof: The job execution sequence is encoded into the
(m, k)-firm frame. So, if the sequence is rotated one bit to
the left, then the bit sequence will be exactly the job execution
sequence, where the newer job corresponds to the rightmost
and the older one to the second from the right. Hence, in
the worst case, when only mandatory jobs get executed, there
will be exactly m jobs executed out of k, corresponding to the
number of ones in the frame. |
This theorem removes the distinctiveness of any special
sequence, such as the upper mechanical word used in [2] and
an intuition of it was the basis of the work in [5].
The next theorem helps to understand the static nature of
(m, k)—firm frame.

Theorem 2. k is a period of any task whose job sequence is
generated by an (m, k)-firm frame.

Proof: Given the way in which jobs are set as mandatory
or optional, to prove the theorem, it suffices to prove the
periodicity of the (m, k)-{irm sequence. Now, since each job
activation triggers one rotation of the (m, k)—firm frame, then
k activations will trigger k rotations of the (i, k)—firm frame.
Since the (m,k)-firm frame is & bits long, & rotations put it
back in its original state. [ |



Note, however, that k& is not necessarily the smallest period,
since the (m,k)-firm frame may have an internal period.
Due to the periodicity, the phase is a number between 0
and k — 1. The periodicity of the (m, k)-firm sequence has
a strong bearing into the size of the search space, since if
one (m,k)-firm frame can be rotated into another one, then
they are the same (m,k)-firm frame with different phases.
Nevertheless, since tasks sets normally have more than one
task, it may happen that a given (m,k)-firm frame phase is
feasible but some other phase of the same (m, k)—firm frame
is not.

Now, consider the following definition, which helps to
understand the ensemble of frames generated by the task set.

Definition. An hiperframe is the shortest set of all job activa-
tions (mandatory/optional) and their respective order from all
(i, k)-firm frames, between two distinct instants, such that
in both instants all (m, k)-firm frames are in the same phase.

As in the case of (m,k)-firm frames, one can also define
a phase of the hiperframe which helps to identify its state
at any given point of the period. Evidently, the search for a
feasible (1, k)—firm schedule can be reduced to the search of
a feasible hiperframe.

IV. DYNAMIC (M,K)-FIRM SCHEDULES

Classical static schedulers repeat the schedules of each
of their (m,k)-firm tasks. However, the best (m,k)-firm
schedule does not necessarily belong to the set of schedules
that can be generated by repeating (m, k)—firm frames, as
is assumed, for example, in [5]. It is possible that the best
schedule has the task set repeating itself with the periodicity
of the hiperframe, as shown in the examples presented in
Section V. For this reason, a different approach is proposed
— Dynamic (m, k)-{irm Schedulers.

Dynamic (m, k)—{irm schedulers change the characteristics
of the (m, k)—{irm frames in such a way that optional jobs are
executed, whenever possible, but without putting the task set
in a situation in which it is not possible to meet the deadlines
of all mandatory jobs.

These constant frame changes are what renders this schedule
dynamic. Such changes to the (m, k)—{irm frame must respect
two conditions, namely:

« not violate any (m, k)—firm guarantees,

« improve the future schedulability of the remaining tasks.
To achieve the first point, it suffices to make transformations
that 1) maintain the number of mandatory jobs (m} within the
(k) bits of the frame, even if the new sequence is not a possible
shift of the original one, and 2) it is done during an optional
job that got executed. Theorem 3 proves that, under these two
conditions, the (m, k)—firm guarantees are not violated.

One transformation that respects the above conditions is
maintaining the rightmost bit in its position and rotate one bit
to the left the resulting leftmost (i, k)—{irm frame, as follows:
[Br—1bp—2-+b1bo] = [bp—2bn_g-+ b1 by_1bg].

Theorem 3. Let there be an (m,k)-{irm task, belonging to
a schedulable set of (m,k)-firm tasks. If after the execution

of an optional job from a given task, the task in question
maintains the most significant bit of its (m,k)-firm frame
optional and rotates the remaining k — 1 leftmost bits one
bit to the left, then the resulting (m,k)-firm sequence will
maintain its (m, k)-firm schedulability state.

Proof: From the execution point of view, an optional task
that gets executed is analogous to a mandatory job in the same
point of the frame. In so being, consider Figure 1, in which a
given frame is sampled. By assumption bit by = 0, i.e., it is
optional. However, in this execution sequence it was changed
to by = 1 since it was actually executed. Since, by assumption,
the initial sequence respected the (i, k)—firm conditions, then
after changing the last bit the initial £ consecutive jobs contain
m + 1 executions. If the optional job does not get executed
at the second pass, i.e., the second instance of by then the
following % consecutive jobs (starting at the first occurrence
of b,,_9) get m executions from bits b,, o to (the second) b, (if
it also does not get executed). From there on, the (m, k)—{irm
guarantee would be met because it would be a static frame as
presented before. [ |

It must be stressed the importance of the last theorem,
because it allows the execution of optional jobs without
jeopardizing the (m,k)-firm guarantees. The execution of
optional jobs was not considered in classical static (m, k)—{irm
schedulers and some version actually demanded that they did
not take place at all, such as the upper mechanical and the
Deeply Red sequences, whereas in probabilistic approaches
there is more of a grey line in this issue due to the inherent
differences in semantics.

A. Dynamic Scheduling of Optional Executions

Optional jobs can only be executed if its execution does
not cause deadline violations of mandatory ones. Algorithm
1 allows to determine if a given optional job can be safely
executed. Its operation is based on an execution queue that
contains, in addition to the ready jobs, close future mandatory
jobs. Closeness is defined as the time horizon in which the
loading effect of the eventual introduction of an optional
job disappears. The loading effect of an optional job is said
to disappear at a given instant ¢; if the finish times of all
mandatory jobs that complete its execution at time ¢ > ¢, are
the same as if the optional job was not executed. To evaluate if
optional jobs can be safely executed, the algorithm simulates
its insertion in the execution queue and then evaluates if the
deadlines of all the jobs in the execution queue (ready and
close mandatory jobs) are violated.

m+1 executions

rep—
~ =
(b1 b baby by bg by_obp_3--by b,y bo)
NI
bo=0

Fig. 1: State of (m, k)—firm frames during the execution of an
optional job



By definition, optional jobs have lower priority than manda-
tory ones. However, when an optional job is inserted in the
execution queue, its priority is virtually elevated, becoming the
same as the mandatory jobs of the same task, and thus may
preempt mandatory jobs of other tasks. Hence, the execution
queue can be divided in two sets, one that contains only jobs
with priority not lower than the priority of the job being tested
('), and another one that contains jobs that have a priority
lower than the one of the optional job being tested (7). The
deadline of jobs in (THEY does not need to be evaluated as
they are not affected by the insertion of the job being tested.
The same is not true for jobs in 77, as thus the deadlines of
all jobs in this set, in conjunction with the optional job itself,
must be evaluated.

Algorithm 1 has three chained repeat cycles. The outermost
moves through the various jobs testing them for schedulability,
the middle one moves through each job going through each
THE and T windows. It sums up the 7" and stores in the ¢/
variables to determine the total execution time. This variable
is in turn used to determine the schedulability, i.e., whether
or not it completes its WCET before its respective deadline.
The innermost cycle is used to determine the duration of the
THE which is stored in the variable ¢_.

The outermost cycle starts by setting the current time equal
to the release time of the current process (7;), if no other
process is active, otherwise, it is set to the finish time of the last
job of which priority is higher than 7;’s. The outermost cycle
uses the middle cycle to determine if the job is schedulable.
If not, then it terminates the algorithm returning failure.
Otherwise, it tests the next job, until the loading effects are
dissipated, i.e., until a job does not load the following one. If
such tests end without any job’s deadline is violated, then it
returns success.

The middle cycle starts by determining the duration of 7'C.
It adds this amount to the ¢’ until it becomes equal to 7;.c,
but not greater since in this case the job would finish, hence
¢« min{7;.c,d +r}. It updates the current time accordingly
and checks for deadline violations. Then it uses the innermost
cycle to determine the duration of the next 7% which it
skips.

The innermost cycle simply repeats itself for as long as
there are higher priority jobs in the execution queue, in order
to determine the finish time of the current 7%,

Due to its multiple cycles, Algorithm 1 has an high compu-
tational complexity, not being suitable for online use. However,
despite the dynamic nature of the algorithm, it can be executed
offline, since all the information necessary for the scheduling
will be already available. Such offline scheduling produces a
scheduling table that can be used online to choose the jobs that
get executed and it does not have an high online computational
requirement.

An example of the execution of Algorithm 1, in which the
queue is EDF sorted, is provided in Figure 2. Algorithm 1
is used to test for schedulability the introduction of 74. In
t = t1, 7y is released, thus Algorithm 1 is executed. At this
point 75 is in execution, but since 75 has a priority lower than

Algorithm 1 Inserting an optional job into the execution queue

i < index of job to be inserted

THE « set of jobs with higher priority than 7;

T* « set of jobs with equal or lower priority than 7;

T <« set of all jobs inside the execution queue (jobs are
sorted by inverse priority)

T %% jobin T

i {fod,m el %%t job’s finish, deadline, release and
WCET times

m <+ SYSrime  %%current time

repeat

m < max{7.r,7i_1.f} %%initializes current time

¢ <0 %%amount of CPU time hitherto used by the
current job
repeat

T — min{7;.r| (17;.f >mAj <)} —

m  %%execution time of tasks in 77,

¢ + min{r.c,¢’ +r} %%add amount of time that

the job can execute before being preempted

¢« min{m.c,d +r} %%add amount of time that

the job can execute before being preempted

m ¢ min{r.c—c,r} +m %%update current time

if m > 7;.d then
return FAIL

end if

if ¢/ == 7;.c then
7i.f <= m  %%the job’s finish time is equal to the
current time

else
Ty« {Vims (tpr ==m) A (7.d < 75.d)}
%%set of all jobs that are released at this instant

%% deadline violated! Return fail

and belong to THE
repeat
¢+ > .Ti.c %%total amount of time required
by jobs in THE
To « {Vp :m < mer < m+c_AT1pd <
7;.d}  %%set of previously released jobs that
belong to THE
m < m+c_ %%update current time
if m > 7;.d then
return FAIL %%if deadline is past, then
return fail
end if
until 75 == {} %%until the queue only have
lower priority jobs
end if
until ¢ == 7;,.¢ %%until the completion of the job

141+ 1 %%test next job
until 7, _y.f < 1;.r %%the last job finishes before the
start of the current
return SUCCESS

that of 74, the algorithm marks the period between ¢; and ¢,
as belonging to 74’s TL and sets ¢ < t5 — t1. It runs the
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Fig. 2: Example of execution a test of a single job as described
by Algorithm 1.

inner most cycle, which determine that the interval ¢, to ¢5 is
in TH®, Similarly, the interval from t5 to tg is a 7%, but the
execution of 74 ends before {g because it reaches its WCET,
a fact that is accounted for by the line ¢ < min{r.c,¢ +r}
in which, in this particular case r < tg — ts.

t5 also needs to be checked for schedulability, since it has
a priority lower than that 7. In this case, ¢’ is initialized with
t1 — to, which is the amount of CPU time that ¢5 had already
used. Moreover, the current time is set to the instant in which
t, ended. By virtue of being the only job in execution, 5 is
the highest priority job, executes until successtul completion
at g.

B. Precedence Rules

In the last sections it was shown that 1) frames can be
changed dynamically without causing a dynamic failure and 2)
an algorithm to insert an optional job into the execution queue
was presented. However, if all tasks that can independently
enter the execution queue without causing a deadline miss
do so simultaneously, it might happen that the new execution
queue/hiperframe becomes not schedulable. Hence, in order to
guarantee that mandatory jobs will not fail their deadlines, it is
not sufficient to test for each job at a time, but it is necessary
to test for all optional jobs trying to be executed.

At this point a number of new concepts must be introduced
to help understand when a deadline might be failed. First,
as mentioned above, all jobs that get executed are put in a
single execution queue. This is a significant departure from
approaches that use two queues, one for mandatory jobs and
another for optional jobs, with jobs in the second queue
being executed if and only if the first queue is empty. The
reason for a single queue is that 1) it completely excludes the
possibility of an optional task starting its execution but missing
its deadline and 2) it will never happen that an optional task
could be scheduled if it were executed before a mandatory task
but it is not schedulable if executed afterwards, thus decreasing
the number of executed optional tasks.

The EDF scheduling policy is used due to its high utilization
and relatively low computational demand, when compared
to other dynamic priorities protocols. Furthermore, EDF can
be considered a static priority assignment policy at the job
level, meaning that any two jobs in an hiperframe, with phase
relations that allow them to compete for resources, maintain
their priority relationship. Thus, EDF is a natural choice for
dynamic scheduling that involves changes to the (hiper)frame.
Other aspect that favors EDF is its associated large body of
knowledge.

Hence, Algorithm 1 is EDF based. Nevertheless, as stated

before, there may be more than one job that performs this
action and concludes that it is eligible to enter the queue.
To solve this problem, a precedence rule is introduced and
only the highest precedence jobs are inserted in the execution
queue. Optional jobs try to enter in the execution queue by
an order defined by the precedence rules. Lower precedence
jobs will find the queue already full. Good candidates for
precedence mechanisms are those that choose optional jobs
that increase the overall schedulability, or simply that increase
the number of future optional jobs that will be executed.
However, to the best of the author’s knowledge, there is no
computationally light algorithm that allows to perform such
type of ordering in a reasonable amount of time. Hence, it was
adopted a simple ordering mechanism that consists in serving
the optional jobs with a priority that is directly proportional
to the time of the last won arbitration.

Note that the precedence rules are internal to the scheduler.
For example, it would be tempting to choose, in a control
setting with a draw concerning optional jobs, the job associated
with a task that had the highest value of some monotonically
increasing function of the error. However, 1) by definition
these draws are rare and 2) as seen from the discussion above,
the scheduler has to choose the loser of the previous draw in
order to maintain schedulability. It is in this sense that these
draws are internal to the scheduler. The only draws that do
not have these characteristic are the first to happen. However,
also by definition, these are even more scarce, too scarce to
have a significant impact.

C. Shifting Mandatory Jobs

As presented in Section IV-A, frame changes were bound
to happen only in optional jobs that actually got executed.
However, there are task sets in which:

e the task set is schedulable,

e it is impossible to stop jobs from all tasks from being
placed as mandatory and released simultaneously,

« whenever jobs from all tasks are released simultaneously
at least one deadline is missed.

Under such conditions, there is no possible shift of the optional
jobs that could possibly save the system from missing a
deadline. A possible solution is to do with mandatory jobs
what is also done with the optional ones, namely:

« whenever mandatory jobs are released, check if all
mandatory jobs can be executed,

« if not, sort them according to a predefined set of param-
eters and the top jobs are executed as mandatory, the rest
act as optional jobs,

« if a mandatory job is not executed, the leftmost bits of
its (m, k)-firm frame are rotated.

The second point above should be done with a certain
amount of caution since, unlike in the optional case, if done
repeatedly will lead to a dynamic failure. To overcome this
problem, an initial schedulability analysis should be per-
formed. In that way it would be guaranteed that all such
(m, k)-firm frame transformations would lead to systems



that are still (m, k)-firm schedulable. Nonetheless, an online
approach, which still requires an initial schedulability analysis
is provided, based on the following theorem:

Theorem 4. Consider a set of schedulable (1, k)—{irm tasks.
The non-execution of a mandatory job of one of those tasks

does not cause a violation of the (i, k)-firm guarantees of

that task if during its previous k — 1 job releases the task had
at least m executions and its rightmost bit is kept fixed, while
the remaining bits are rotated one bit to the left.

Proof: As in the case of optional jobs, execution-wise, a
mandatory job that did not get executed is akin to an optional
job that also did not get executed. Therefore, after changing the
last bit from 0 — 1, and shifting the leftmost &k —1 bits, the job
execution will appear as presented in Figure 3. The sequences
before the transition will be scheduled to the (m,k)-firm
schedulability assumption, the sequence of k consecutive bits
starting at by has m execution due to the assumption that its
previous k& — 1 job release (from bg to b,_1) had at least m
executions. |

It is noteworthy that the main condition for the previous
theorem is met if and only if the task had executed an optional
job in its recent past, i.e., within the last k — 1 jobs, otherwise
the number of jobs activations within the last £ — 1 jobs would
be m — 1. Another noteworthy aspect of the last theorem is
the fact that it applies only to one task. The case of a group
of tasks will be developed in the following sections.

As in the optional job case, precedences can/must also
be defined, which allow the scheduler to choose among the
mandatory jobs that can be turned into optional ones, i.e.
the jobs left out in case of temporary overloads. The use
of a precedence rule proved itself always successful in tests
that were performed by the authors. Some of these tests are
presented in Section V. In fact, this is a result that the author
has not been able to prove: the need for shifting a mandatory
Jjob only occur in the first jobs of a task, either at the beginning
of the executions or when a new task is introduced in the task
set.

The last three paragraphs suggest an alternative view of the
scheduler presented herein, namely

| initialize the execution set with & bits in which m bits

are set,

2 if the non-execution of a job would jeopardize the

(m, k)-firm guarantees (among the last £ — L jobs only

m — 1 jobs were executed), set it as mandatory. Set it as

optional otherwise,

m-+1 executions

rep—

Py
bn—1bp—obp_3--babi by ba brn_2by_3---b1 by_1bo]
—

bo=1

Fig. 3: State of (m, k)—firm frames during the non execution
of a mandatory job

(98]

optional jobs compete for the execution in unused spaces,

4 if a draw occur, when the precedence rule is applied, the
task that won the last arbitration loses the current one,

5 if a draw remains, choose jobs for execution randomly.

D. Hiperframe Initialization

Dynamic (m, k)—firm scheduling has a number of peculiar-
ities that are nonexisting in static (m, k)—firm scheduling. For
instance, in the static case the hiperframe is known a priori,
i.e., before the activation of the first job. A naive approach
would be to initialize the dynamic scheduler with a statical
hiperframe that was known to have reasonable scheduling
characteristics. But the knowledge of such hiperframe implies
some sort of static scheduling, which defeats the purpose of
using a dynamic scheduler.

In spite of this aspect, the dynamic approach is still of
use, because if the task set is schedulable then the dynam-
ical approach converges to an hiperframe that is schedulable
regardless of the initial hiperframe. However, it is possible
that there is more than one possible schedule that verifies the
(m, k)-firm conditions, some of them differing only in their
phases. Moreover, different initial hiperframes may converge
to different final hiperframes.

Regarding the initialization per se, as stated before, it
18 not known a priori any schedulable hiperframe. More
precisely, for operations like the postponement of a mandatory
job, as previously discussed, it is vital to already know the
(m, k)—firm frame of the job in question. Therefore, measures
are necessary to ensure that such initial lack of knowledge will
not turn into a dynamic failure in an otherwise (i, k)-firm
schedulable set.

One way of achieving such goal is to assume that all pre-
vious jobs, of tasks that have not yet activated any jobs, were
successfully executed. This ensures that at the beginning of the
hiperframe all possible transformations are allowed. However,
from an execution point-of-view, being able to execute such
jobs even while having to change the initial hiperframe is akin
to start from a correct hiperframe and execute the same jobs.
Hence, by assuming that all jobs before the beginning of the
hiperframe were executed the hiperframe will automatically
act as or converge to a correct hiperframe.

The strategy presented in the last paragraph is, in a sense,
optimal but not unique. For example, the phases of the
hiperframe can be used to develop several variations of the
presented strategy.

V. EXAMPLES OF DYNAMIC SCHEDULES

This section presents a few examples of the execution of
the presented scheduler. These examples show some emerging
properties of the dynamic scheduler. (m, k)—firm tasks will be
described as (C, T, m, k) were the first two variables designate
the worst case execution time and the period, respectively.

The first example is the task set 7} =
{(5,6,1,3),(4,5,1.2)}. TIts schedule is represented in
Figures 4 and 5. A static (m, k)—firm scheduler would have
problems scheduling this simple task set since, regardless of
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@ time
Fig. 4: First half of a possible schedule of 7 generated by
the dynamic scheduler proposed in this document

the initial phases (both of the tasks and of their hiperframes),
there would be an instant in which both tasks would generate
mandatory jobs. Once more, the initial hiperframes are
unknown, hence it is assumed that all previous activations
were executed. Let both jobs start as mandatory at instant
t = 0 and let the job from 7o be chosen for execution. It will
end its execution at instant £ = 4. At { = 5 the second job
from 75 is activated. Since it iS optional and its execution
would jeopardize the execution of the second job of 77, which
is mandatory, it is not executed. Hence, this optional job does
not get executed even tough the execution queue is currently
empty. At ¢ = 6 the second job of 7 is activated and executed.
At t = 10, the third job of 7 is activated as mandatory and
starts its execution at £ = 11 after the completion of the job
from 1. At £ = 12, an optional job of 7 is released, which
is also not executed because it would not meet its deadline
due to interference of the ongoing job. At £ = 15 another
optional job from 7> is activated and executed. At £ = 18, 7
activates an optional job that gets executed because the next
job from 7 (activated at £ = 20) is also optional and only
one of them can be activated. Using the rules defined above,
there is a draw and m» executed last. Continuing, the next job
activation (7y) occurs at ¢ = 24, which is an optional job that
cannot be executed because at { = 25 a mandatory job (13)
will be activated. The later job ends its execution at { = 29
and at £ = 30 the whole process repeats itself. Note that the
scheduling generated for 71 a (m,k)-firm frame [01010]
and for 75 [101101] or simply [101] (internal period). This
schedule is represented at figures 4 and 5. Note also that if in
the moment at which the two optional jobs were competing
for execution (f = 18) 1, were chosen for execution then the
(m, k)—firm frames would be 7, [01001] and 7 [101110].
There is also another possibility that emerges by starting the
scheduling by choosing the job from the first task as the first

T
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idle -
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Fig. 5: Second half of a possible schedule of 7} generated by
the dynamic scheduler proposed in this document
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@ @ time@ lil time
Fig. 6: Schedule of task set of 75 generated by GDPA — left
starts with job from 7y, right starts with job from 7

job to be executed, which would lead to: 7 [10010] and
72 [011101] or 7y [10100] and 7 [011011] (or [011]),
according to a particular choice of optional job. Once again,
the second hiperframe is comprised of rotated (mn,k)-firm
frames of the first hiperframe. In particular the first set can
be generated by starting the sequence shown in this example
at £ = 6.

The following example shows that the proposed scheduler is
able to schedule task sets that GDPA is not. Consider the task
set To = {(3,4,1,2),(3,5,1,2)}. On this task set, GDPA,
regardless of the choice of the first task to be executed would
cause T to have a dynamic failure since 7 would, on several
occasions, terminate the execution of one of its jobs, wait one
time unit and then restart, because jobs from 7 would not be
in execution, leaving the execution queue empty. On the other
hand, several jobs from 7» are activated while a job from the
first task is in execution. Thus, the execution queue would be
full. Figure 6 presents all possible schedules that the GDPA
can generate on this task set.

The same task set can be scheduled using the presented
scheduler and such schedule is presented in Figure 7. For
instance, in ¢ = 4 when the second job of 7, is activated,
it does not enter in the ready queue due to a blocking from
the mandatory job from 75 (activated at £ = 5). The rest of the
schedule is similar to previous schedule. More specifically, it
converges to a suitable hiperframe at ¢t = 8, with 7 : [10101]
and 72 : [0101] or 72 : [01] due to the internal period. Once
again, starting with a job from 7 would only cause a phase
difference in the hiperframe.

VI. COMPARISON WITH PREVIOUS SOLUTIONS

The presented scheduler improves upon previous schedulers
because it does not require a (k,k)-firm reservation (see
Section ID). It is an improvement even over the work in [5],
which searched over all possible static frames of each task
with the corresponding values of m and k, ie., for each

[1] [0 [01] [0 [0 [p] [O1 [0 [0 [O1]

R SR R S T e T o

Fig. 7: A possible schedule of 75 generated by the dynamic
scheduler proposed in this document



(my, ki )~firm task it was searched for all possible %, bits long
frames that contained 12; ones. This implies that the presented
scheduler outperforms any static scheduler of this family. The
following theorem provides a formal proof of this fact.

Theorem 5. The set of (m,k)-firm task sets that can be

scheduled by classical static schedulers in which m and k of

the (m, k)—firm frames are equal to the respective values of the
(m, k)-firmn task, is a proper subset of the set of (1, k)—firm
task sets that can be scheduled by the dynamic scheduler
presented herein.

Proof: The theorem is true if all (m, k)—firm task sets that
can be scheduled by a static scheduler can also be scheduled
by the novel scheduler, i.e., the subser part, and there is
at least one task set that is schedulable by the proposed
scheduler but is not schedulable by any static scheduler,
implying proper subset part. The subset part 1) if there
is a static (w1, k)-firm schedule that meets all (i, k)—firm
guarantees using (m, k)-firm frames with values of m and
k equal to the respective values of the (m,k)-firm, then if
the dynamic scheduler is initialized with the aforementioned
schedule (hiperframe), in the worst case scenario, i.e., no
optional job is executed, the dynamic scheduler will send
exactly the same sequence of jobs into the execution queue.
And 2) as discussed above, regardless of the initial schedule
(hiperframe), if the task set is schedulable, then the hiperframe
converges into a schedulable (fixed) hiperframe, possibly the
static schedule in question. From what follows that if a
classical static scheduler can meet all guarantees, so can the
dynamic scheduler. For proving the proper part it suffices to
present an example of a task set that is schedulable by the
dynamic scheduler but is not schedulable by any classical static
scheduler. To this end consider a task set with two tasks, for
which the classical utilization, i.e., U = Zi (T > 1, with
periods that are not multiples of one another and with implicit
deadlines. Consider also, that their (m. k)-firm properties are
chosen in such a that it would allow the dynamic scheduler
to meet its deadlines, for instance m; = 1 and k; = 2 [%1 s
where j represents the other task. Due to the fact that the
periods are not multiples of each other, when scheduled by
a stationary scheduler, there will be an instant in which both
tasks are activated as mandatory. At such instant at least one of
the tasks will fail its deadline since the combined utilization of
both tasks is greater than one. Therefore no static scheduler
can guarantee that the (m,k)-firm constraints will be met.
However, this task set is schedulable by the dynamic scheduler
by construction. |

An important remark is that classical static (m, k)—firm
schedulers can only schedule task sets that are EDF schedu-
lable (see discussion at the beginning of this section) and all
EDF schedulable task sets are schedulable by the dynamical
algorithm proposed here, since the execution queue is itself
EDF scheduled. Furthermore, besides the point raised by the
last theorem about the set of schedulable task sets, even among
the task sets for which there is a classical static schedule, the

proposed scheduler achieves utilizations that are never inferior
to those achieved by classical statical schedulers.

An important difference, which is also an improvement, be-
tween the presented approach and classical static (m, k)—firm
schedulers, is the fact that in the classical approaches the
schedulers have two queues, namely: queue 1, devoted to
mandatory jobs, and all jobs that are in it get scheduled;
queue 2, is used to schedule optional jobs, and these jobs are
only executed if queue 1 is empty. Each queue is scheduled
according to classic scheduling policies, such as EDF. In the
proposed scheduler, it is used only one queue, which in turn
may increase the number of optional jobs that are executed.
For example, consider Figure 8, in which the mandatory job
has a far absolute deadline, whereas there is an optional
job with a close deadline. In the scheme that is used in
classical static/dynamic (i, k)-firm schedulers, the manda-
tory job would be in the highest priority queue, hence it
would be executed first. Thus, the optional job would not be
executed right away because the mandatory job was already
in execution, leading to a deadline miss. However, in the
proposed approach, after certifying itself that the optional
job would not cause a deadline miss, the scheduler would
execute the optional job, as shown in Figure 8, thus, meeting
all deadlines.

But there are also a few downturns. The first is related to
the high computational complexity of the proposed scheduler.
A related negative aspect, which is common to all dynamic
schedulers, deals with the loss of predictability under overload
conditions. The loss of predictability occurs in the sense that
in some classical (m, k)-firm schedulers, whenever there is a
violation of an (i, k)-firm guarantee, it is possible to predict
the order in which jobs will miss their deadlines. For instance,
in the scheduler of [2], the tasks with the longest periods
suffer the violations first, since on such scheduler assumes
synchronous task release and that jobs in the execution queue
are served in a Rate Monotonic manner. Furthermore, when
a job misses a mandatory job it also violates its (m, k)—firm
guarantee. But, for dynamic (m, k)—firm schedulers, it is not
possible to make similar predictions.

The proposed scheduler improves upon the work of DBP
and its variants because it does not have any of the downturns
presented in Section II. Examples of such downturns include
a disregard for the deadlines of the tasks, the fact that the
scheduler tends to schedule tasks with a short distance to
failure close to each other, a total disregard for the relation

optional

mandatory Y 5

Fig. 8: Example of an advantage of a single queue.



of the periods of the tasks and a disregard for the relations
between the time to failure of the various tasks.

A third negative aspect of the use of dynamic (i, k)—firm
schedulers is related to the fact that some applications require
that, beside the usual (m, k)-firm guarantees, tasks must have
a mandatory job in a pre-determined part of the (m, k)—firm
frame. For example the JPEG frame transmission, see Section
II. Nevertheless, it is possible to make some modifications in
order to properly accommodate these requirements, such as
splitting the task, giving different values of m and k to each
of the subtasks, one or more behaving as a classical task,
i.e., executing all of its jobs. Alternatively, it is possible to
modify the (m, k)-firm definitions as to have three levels of
Jjobs instead of the current two.

VII. CONCLUSION

(m, k)-firm schedulers have a great potential to improve
the performance of many real-time applications. However,
many applications require deterministic guarantees regarding
the performance of the schedulers.

Traditionally, dynamic schedulers have been mostly com-
prised by probabilistic schedulers of the DBP family. A novel
deterministic dynamic scheduler is presented in this paper. The
proposed dynamic scheduler hinged upon the fact that it is
possible to dynamically change an (m, k)-{irm frame while
maintaining its respective guarantee. In fact, there are task sets
in which is possible to provide the respective guarantees only if
the respective frame is changed at some point. Therefore, this
scheduler is able to schedule (mn, k)-firm task sets that are not
schedulable by conventional deterministic (i, k)—firm sched-
ulers, as well as to improve the resource utilization of task
sets that are schedulable by those conventional (m, k)—firm
schedulers.

Notwithstanding the novelty of this new scheduler, some
points remain to be optimized. For example, the algorithm for
the insertion of a new job on the execution queue, in its current
state is computationally intensive, implying in practice that the
scheduler must be used offline. Another point that needs to be
investigated is the schedulability test.
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