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Abstract - Distributed systems rely in communication networks, 
typically a bus, in order to exchange messages and fulfill their 
goals. However, message transmission is subject to interferences 
that ultimately can lead to message corruption. In systems where 
a high-reliability is sought, error recovery mechanisms can be 
deployed in order to give the required reliability level, and this 
can be done in the spatial or temporal domain. In the scope of the 
FTT paradigm, and applied to the FTT-CAN protocol, the 
authors have previously presented a time domain recovery 
method using message retransmissions controlled by a server. In 
this article we assess the impact of different scheduling policies 
for the server, presenting a qualitative evaluation of the 
alternatives, complemented by a simulation study, in order to 
verify their advantages and weak points.  

Keywords — transient errors; Time-Triggered; scheduling 
policies; server 

I. INTRODUCTION 
Nowadays, large pieces of equipment or machinery use 

several embedded nodes that can be physically distant and 
must cooperate to fulfill a given objective, composing what is 
known as a Distributed Embedded System (DES). These are 
present in cars, planes, trains, medical equipment or in factory 
plants, to name a few. A DES depends on exchanging 
information between its nodes, this being accomplished by an 
underlying communication network. Depending on the 
specific characteristics of the application, e.g. required 
bandwidth, criticality level or cost, the designer can choose 
one of the many technologies available today.  

From the multitude of available network technologies, 
CAN [1] is still one of the most used networks, e.g. in the 
automotive industry, with more than 700 million nodes sold 
annually [2].  

A common problem to all communication networks is the 
occurrence of errors in the transmission of messages that can 
compromise the correct system operation. The faults that can 
lead to message errors are unavoidable and can be due to 
electromagnetic interference, radiation, temperature variations, 

loose connectors, etc. Faults can be classified as permanent or 
transient, being the transient ones prevalent and the ones we 
are interested in this paper. 

To obtain tolerance to communication errors, spatial 
redundancy, temporal redundancy or a combination of both 
can be used. In spatial redundancy extra hardware (nodes and 
buses) is needed in order to allow sending each message 
through different paths, increasing the system complexity and 
cost. As an advantage, this technique tolerates both permanent 
and transient faults. Temporal redundancy consists in sending 
a message and its replicas over the same path but in different 
time instants. This technique does not require additional 
hardware, but only tolerates transient faults. 

This work focuses on Time-Triggered (TT) 
communication, i.e., in which the network transmits its 
messages in specified time instants, but using the Flexible 
Time-Triggered paradigm (FTT) that combines a TT approach 
with online traffic scheduling [3]. This feature allows using 
temporal redundancy with message retransmissions triggered 
by the occurrence of errors, being this in contrast to typical 
static TT systems, where the retransmissions are pre-planned 
and always occur, independently of the existence of errors, 
leading to poor bandwidth efficiency. Our retransmission 
mechanism is centrally controlled and the scheduling is done 
dynamically and jointly with the system messages [4]. Upon 
error detection, a server manages the retransmission of 
messages, interacting with the message scheduler, attempting 
to deliver messages affected by errors before its deadline, but 
with a bounded and predictable interference on the remaining 
messages. 

Clearly, the server scheduling policy impacts both in the 
retransmission recovery time and on the way the server 
interferes with the other messages, implying that each server 
scheduling policy presents a tradeoff between these two 
parameters. In this paper we propose different policies for the 
server scheduling, present their main characteristics and 
analyze their implications. 
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The paper is organized as follows. The related work is 
presented in section II, followed by the system description in 
section III, which includes a brief description of the FTT-CAN 
protocol, the assumed fault model and the server 
configuration. In section IV the alternative policies for the 
server are presented, and in section V the policies are 
assessed. Finally section VI concludes the paper. 

II. RELATED WORK 
Fault tolerance in classical Time-Triggered systems, e.g. 

TTP/C [5] or FlexRay [6], when using temporal redundancy, 
implies the use of extra slots that are statically allocated and 
that are left unused when errors do not occur, leading to low 
bandwidth efficiency. Even if optimization techniques are 
used to minimize the number of used slots, like in [7], the 
extra bandwidth for a specified reliability level can reach more 
than 100% of the original bandwidth.  

Another approach, a specific protocol proposed for CAN 
[8], allows the use of some slots defined for TT traffic by  
event-triggered traffic, when there are no TT messages to 
transmit. This is achieved by assigning lower priority CAN 
ID’s to event-triggered messages. Nevertheless, this protocol 
suffers basically from the same problem as classic TT 
systems, because these slots are statically allocated, although 
with an improvement in average bandwidth efficiency. 

III. SYSTEM DESCRIPTION 
In this section we briefly describe the FTT paradigm and 

FTT-CAN protocol, define the system, the assumed fault 
model, the server and parameter choices. 

A. FTT-CAN Protocol 
The FTT-CAN protocol [3] is an instantiation of the 

Flexible-Time Triggered paradigm on the CAN protocol [1]. 
In this paradigm, the global time is divided in Elementary 
Cycles (EC) with a predefined duration LEC. The EC is 
further divided in two disjoint windows, each reserved for a 
particular traffic class. The nodes transmit autonomously 
Event-Triggered traffic in the Asynchronous Window. The TT 
traffic is transmitted in the Synchronous Window (SW), when 
polled by a special message, the Trigger Message (TM), 
transmitted by the Master node. The TM also marks the 
beginning of the EC. The duration of the SW depends on the 
traffic scheduled for each EC but it is upper bounded by a 
configuration parameter – LSW - that must be set 
appropriately to provide the necessary guarantees of 
schedulability for the TT traffic. 

The Master node is then responsible for scheduling the TT 
traffic online and can, in this way, implement any scheduling 
policy, e.g. Rate-Monotonic or Earliest Deadline First, thus 
being very flexible and independent of the underlying 
communication technology.  

As said previously, the focus of this work is on the use of 
temporal redundancy to recover transient errors. Due to the 

high flexibility brought by the online scheduling characteristic 
available in the FTT paradigm, it is possible to implement 
distinct ways to recover transmission errors, namely by 
scheduling the server with different techniques, which is the 
topic of this paper.  

B. System Definition and Fault Model 
The system is composed by network nodes connected 

through a simplex CAN bus. One of the nodes, the Master, is 
responsible for scheduling all the time-triggered traffic and 
also for implementing the error recovery mechanism. The 
message set has n messages, each one characterized by a 
period Ti, transmission time (including maximum stuff bits) 
Ci, relative deadline Di and offset Oi. 

A simple but effective way to model the arrival of faults in 
the CAN bus is by using a Poisson model [9]. In this model 
the mean time between faults is λ and the faults arrive at 
random instants with an inter-arrival time that follows an 
exponential distribution. The probability of having k errors in 
the time interval t is given by equation 1.  

 PሺX ൌ k, tሻ ൌ eି୲λሺtλሻ୩k!  (1) 

 
We also assume that λ is known and can be calculated from 

experimental data, obtained for instance from the Bit Error 
Rate (BER) values in [10], and that it is dependent on the 
environment where the embedded system is deployed, 
classified as aggressive, normal or benign environments. 
These values are essential to correctly define the server 
parameters, as described in the next section. 

C. Server and its configuration parameters 
A server is an entity that behaves like a periodic task and is 

characterized by a period TS and capacity CS. The way that the 
server is allowed to use its capacity and the time instants and 
amount of capacity replenishment is dependent on the server 
type [11]. The fault incidence in the server period, for a given 
probability, is obtained through equation 1, using the 
cumulative distribution function, allowing in this way to 
choose the necessary capacity in order to recover all errors, 
with a residual probability of non-recovery. This process was 
described in a previous paper [4]. The chosen server was a 
Deferrable Server (DS), mainly because of its simplicity and 
reactivity, since its capacity may be used at any time. 

 

IV. ALTERNATIVE SERVER SCHEDULING POLICIES  
In our previous work [4], the server was granted with the 

highest priority (Max_Pr) in a fixed priorities setting. The 
rationale behind this option was scheduling the server 
immediately, to allow the retransmissions to occur as soon as 
possible, thus maximizing their likelihood of occurring before 
the messages deadline (Algorithm 1). 



 
Algorithm 1: Server Scheduling with Maximum Priority  
Inputs: M, Detected Errors, Server Retransmission Queue 

(SRQ), Ready Queue (RQ) 
Output: Schedule for Next EC 
 
1.  For each message affected by Error or Omission 
   Put it in the SRQ 
 End 
2.   For each message in SRQ 
    If server remaining capacity >= message size 
     Move message from SRQ to the head of 

                 RQ and adjust server capacity 
    End 
 End 
3.  Build the EC Schedule 
4. Put all retransmissions not dispatched back on SRQ and 

adjust server capacity 
5. Return the EC Schedule 

 
Firstly all detected errors in the current EC are added to the 

Server Retransmission Queue (SRQ). After that, messages in 
the SRQ are moved to the Ready Queue (RQ), provided that 
the server capacity is not exhausted (line 2). Under the 
Max_Pr scheme, retransmissions are added at the head of the 
RQ, giving them higher priority than all other messages. This 
way these messages are the first ones to be scheduled, 
minimizing their recovery time, as intended. Eventual message 
retransmissions that do not fit in the SW are pushed back to 
the SRQ (line 4). In both line 2 and 4 the server capacity is 
updated accordingly. In line 5 the EC schedule is returned. 

A. Motivational Examples 
Despite being intuitive, assigning the highest priority to the 

server is not the only option and may, in fact, not be the most 
sensible one. For example, consider that a message instance 
with a far deadline is affected by an error. Assigning the 
highest priority to the server would cause the retransmission to 
occur in the following EC, possibly delaying unnecessarily the 
transmission of messages with shorter deadlines. 

In order to gain some insight into this problem, we show 
some exemplary scenarios, with and without errors, to observe 
the behavior of the recovery mechanism and the different 
types of interference produced by different server scheduling 
policies. The message set used in the following scenarios is 
detailed in TABLE I, where message deadlines are equal to 
periods and priorities are assigned using the Rate Monotonic 
policy. The transmission time of all messages is 0.2 time units, 
resulting in a utilization of 55%. 

Figure 1 shows the timelines corresponding to the 
maximum priority policy, with and without errors (bottom and 
top, respectively). The numbers below the line indicate the 
message activation instants. This example illustrates the 
scenario described above, in which an error in a message with 
a longer period (m6) causes a delay of one EC on a message 
with a shorter period (m5). This kind of interference is 

unnecessary because message m6 could be retransmitted in the 
following EC, without violating its deadline.  

TABLE I : MESSAGE SET DEFINITION 

 

Fig. 1. Max_Pr scheduling policy illustration; top: no errors; bottom: 
with errors 

An alternative policy, which prevents the priority inversion 
scenario depicted above, consists in preserving the message’s 
priority during retransmissions (Same_Pr). In terms of 
implementation, such policy is easily accomplished, since it 
consists in handling retransmissions in the same way as 
regular messages. This requires changing line 2 of Algorithm 
1, only, which becomes “Insert message retransmission in the 
proper position of the RQ, according to its priority”. Since, in 
this case, the messages in the SRQ are scheduled together with 
the remaining messages, following a system-wide fixed-
priority scheduling policy, message retransmissions do not 
interfere with higher priority messages, as desired.  

On the other hand, the error recovery latency depends on 
the priority of the message affected by the error and on the 
instantaneous system load. Consequently, this scheduling 
policy has a behavior that is dual of the Max_Pr scheme. For 
this reason it may lead to unnecessary deadline misses, as 
illustrated in Figure 2, where the message set is based on 
TABLE I, except in what concerns the period of m6, which is 
reduced from 4 to 3 time units. 

 

 
Fig. 2. Max_Pr (top) vs Same_Pr (bottom) scheduling policies 
illustration 

In this case, the message retransmission was unnecessarily 
delayed, leading to a deadline miss (Figure 2, bottom). 
Conversely, if the Max_Pr scheme was used, no deadline 
would be missed (Figure 2, top). 
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Reasoning about the scenarios shown above, it can be 
concluded that both scheduling schemes have a common 
problem: the scheduling decisions regarding message 
retransmissions do not take into account the dynamic system 
state and thus are suboptimal. This observation suggests that a 
possible way of improving the system performance may be 
achieved by using the message slack as a scheduling decision 
parameter. One simple way of obtaining this behavior consists 
in using the Same_Pr scheme by default, in order to prevent 
priority inversions as much as possible, and assigning the 
maximum priority to the server whenever the message at the 
head of its retransmission queue has a slack of one EC, in 
order to reduce the number of deadline misses affecting 
retransmissions of low-priority messages. This scheme, 
designated Same_Pr_DMP, is described in Algorithm 2. Note 
that Algorithm 2 shows only the differences with respect to 
Algorithm 1. 

 
Algorithm 2: Server Scheduling with Same Priority with 
Deadline Miss Protection 
2. For each message in SRQ 
  If server capacity >= message size 
   If absolute deadline > Next EC 
    Insert message in the RQ, with normal 

                 priority 
    else 
     Insert message at the head of the RQ 
    End 
    End 
  End 
 

Though simple and easy to implement, as it requires only 
one additional test with respect to the Same_Pr scheme, the 
Same_Pr_DMP policy is still suboptimal as it neglects the 
message’s slack until a border condition is met, namely the 
last EC before the deadline.  

Conversely, the Earliest-Deadline First [12] policy is a 
scheduling policy that takes into account the dynamic state of 
the system, giving priority to the tasks with more urgent 
deadlines. This is the feature that makes EDF optimal with 

respect to meeting deadlines, while allowing higher utilization 
factors than fixed-priority schemes. This feature is particularly 
well suited for the error server scheduling on FTT-CAN. As 
mentioned before, errors may affect both messages with short 
or long deadlines and, due to their random nature, it is not 
possible to forecast which kind of requests will be submitted 
to the server, thus optimum decisions cannot be fixed nor 
taken offline.  

These observations, together with related work that 
proposes hierarchical scheduling using different scheduling 
policies at different levels in the scheduling process [13], led 
to the proposal of the EDF scheduling policy (for the server 
only), in which the deadlines of the message retransmissions 
are compared with the ones of normal messages, being 
scheduled as soon as their deadline is shorter than the one of 
any other of the normal ready messages.  

In this way, retransmissions have a minimum interference 
on the other messages when their deadlines are farther away, 
but gain importance gradually, i.e., increase their priority, as 
their deadlines approach, as desired. The operation of the EDF 
policy is described in Algorithm 3.  

As it will be shown in Section V, the EDF scheduling 
policy delivers the best results in terms of indirect 
interference, outperforming the other policies in many cases, 
as expected. However, it incurs in a relatively high overhead, 
since it requires that both the retransmission queue and the 
ready queue are sorted by deadline and insertions on the ready 
queue must also be made according to the deadline. 
Considering that CAN is often used in embedded systems 
based on extremely resource-constrained hardware, such 
overhead can be prohibitive. Therefore the cost-benefit 
relation must be carefully evaluated. 

Figure 3 presents an example of the different behavior in 
terms of recovery latency and indirect interference of the four 
proposed server scheduling policies, showing a scenario in 
which only the EDF scheme can recover a message without 
causing any deadline miss. 

 

 

           
Fig.  3.  Applying different server scheduling policies. Top – no errors; Second – Max_Pr; Third – Same_Pr or Same_P_DMP; Fourth – EDF
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Algorithm 3: Server Scheduling with EDF Priority  
2.1. Build normal schedule of next EC – RQ - using normal 

scheduler 
2.2. Sort SRQ by deadline 
2.3.  Sort RQ by deadline 
2.4. For each message in SRQ 
    If server capacity >= message size 
     Insert message in the RQ, 

                  sorted by deadline 
    End 
 End 

V. RESULTS 
In this section we present a set of simulation results that 

aim at evaluating the performance and correctness of the 
proposed algorithms. To this end, in addition to the more 
obvious numeric results regarding the number of recovered 
and non-recovered errors, we also include numerical results 
that allow assessing the response-time and internal effects of 
the diverse server scheduling policies. 

The simulations were carried out on the FTT-CAN 
simulator presented in [4], which was extended with the server 
scheduling policies presented in this paper. 

To evaluate the behavior of each server scheduling policy, 
we have used message sets obtained from the literature [14], 
[15] and also from an electric vehicle prototype [16]. The 
results obtained with the various message sets are analogous 
so, due to space limitations, only the results of the first 
message set are presented.  

The message set is defined in Table II, where ID is the 
CAN message identifier (lower number means higher 
priority), T is the period in number of ECs and DLC the 
message size, in bytes. 

 
TABLE II. MESSAGE SET UPDATED_SAE 

 
 
For each configuration, we start with the minimum LSW 

that allows the transmission of messages within their 
deadlines, without considering bus faults. Afterwards we 
generate the error pattern, using a BER 100 times greater (λ = 

10 faults/s) than the scenario experimentally encountered in 
aggressive environments [10], in order to stress the error 
recovery mechanism. Then the system is simulated for each 
one of the alternative policies, retransmissions included, and 
the corresponding numerical values stored. Finally, the LSW 
size is increased and the whole process is repeated. 

A. Recovered Errors and Interference 
Table III presents the deadline misses suffered by messages 
affected by errors, for the diverse policies. The presented 
results correspond to the average value of ten runs of the 
simulator, each one done for 2 million ECs, where the BER 
used in the fault generator is rather high in order to get a 
significant number of errors per simulation. 

The first line shows the total number of deadline misses, 
while the second one shows the number of errors that affected 
messages that had no slack, and thus that weren’t recoverable 
by any of the mechanisms.  

We can see that for Max_Pr and EDF policies all misses 
correspond to unrecoverable messages, i.e. messages that 
suffer an error in the EC in which they have their deadline. For 
the Same_Pr policy, as the server inherits the original message 
priority, retransmissions can be delayed by several cycles and 
eventually lose their deadlines, as shown in the scenario 
depicted in Figure 4. This situation happened in fact, as 
attested by the relatively large number of deadline misses. As 
expected, the Same_Pr_DMP policy significantly attenuates 
this problem, though not eliminating it. 

 
TABLE III. DEADLINE MISSES DUE TO DIRECT INTERFERENCE (LSW=70%) 

Unrecovered by the Server 
 Max_Pr Same_Pr Same_Pr_DMP EDF 
Total misses 29 510 101 29 
Unrecoverable 
misses 

29 31 31 29 

 
Table IV shows the number of deadline misses suffered by 

messages not affected by errors, thus due to the server 
execution - indirect interference. As expected, the EDF policy 
has the best performance in this criterion, since it only 
schedules the retransmissions when they are more urgent (i.e. 
have shorter deadlines) than the original messages. 

It should be remarked that the presented results depend 
strongly on the bus load. For instance, for LSW=72.5%, in this 
message set, there is no difference between the diverse 
policies, because the server execution does not cause a 
significant interference on the original messages. 

 
TABLE IV. DEADLINE MISSES DUE TO INDIRECT INTERFERENCE (LSW=70%) 

Deadline misses in original messages 
Max_Pr Same_Pr Same_Pr_DMP EDF 

1133 1133 1133 1093 
 

ID T DLC ID T DLC ID T DLC
1 20 1 13 3 1 25 5 2
2 2 2 14 3 4 26 5 2
3 2 1 15 3 4 27 5 4
4 2 2 16 3 4 28 5 5
5 2 1 17 4 1 29 5 3
6 2 2 18 4 2 30 20 1
7 2 1 19 4 6 31 40 4
8 2 1 20 4 2 32 40 1
9 3 1 21 4 3 33 40 1

10 3 1 22 4 2 34 400 3
11 3 1 23 5 2 35 400 1
12 3 1 24 5 2 36 400 1



B. Server Recovery Time 
Table V shows the average server response times for each 

one of the server scheduling policies. We can see that the 
Max_Pr  policy shows the lowest value, always equal to one 
EC. There are a few exceptions, too small to cause visible 
effects in Table 5, which correspond to scenarios in which 
errors affect message retransmissions. On the other hand, the 
Same_Pr/Same_Pr_DMP policies show the worst 
performance, being EDF a good compromise between these 
two extremes. We can also observe that the 3 initial schemes 
have a similar behavior regarding the high priority messages, 
which fit in the LSW even when the server executes, as 
expected. On the other hand, messages that have lower priority 
than these ones see their recovery time increasingly degrading 
for EDF, Same_Pr_DMP and Same_Pr, by this order. This 
behavior is also expected because, for these policies, the 
recovery can be delayed, something that does not happen with 
Max_Pr. 
 

Table V. SERVER AVERAGE RESPONSE TIME 

 

VI.  CONCLUSIONS 
In this paper we have explored alternative scheduling 

policies applied to a temporal redundancy scheme, in the 
scope of the FTT-paradigm, using retransmission servers. 
After the problem definition, we presented a few motivational 
scenarios, which show that different server scheduling policies 
have a real impact in the recovery time and in the interference 
caused by the server in messages not affected by errors.  

Then, the algorithms that correspond to each server 
alternative were presented and their impact in terms of 
complexity was qualitatively evaluated. Afterwards, we 
presented a numerical evaluation of the proposed algorithms, 
obtained via simulation, concerning the efficiency of 
recovering erroneous transmissions. The obtained results show 
that the relative performance of the diverse algorithms 
depends on the particular scenarios and criteria. For instance, 
if the predominant criterion is minimizing the recovery time, 
the best scheduling policy is Max_Pr at the expense of a 
higher global number of messages with missed deadlines than 
EDF. The Same_Pr policy showed the worst behavior, which 
can be significantly improved by using deadline miss 
protection. Ultimately, it is the designer that must evaluate 
carefully the pros and cons of each scheduling server policy 
based on the application criteria. 

As future work, we will carry out an analytical evaluation 
of each policy, as well as a more detailed characterization of 
their associated overhead, including optimized implementation 
techniques, e.g. the ones presented in [17]. 
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