
Comparing Scheduling Policies for a Message
Transient Error Recovery Server in a

Time-Triggered Setting

Luis Marques*, Verónica Vasconcelos
*Instituto de Telecomunicações

Instituto Politécnico de Coimbra,
ISEC, DEE, Rua Pedro Nunes,

Coimbra, Portugal
lmarques@isec.pt, veronica@isec.pt

Paulo Pedreiras
Instituto de Telecomunicações,
DETI – Universidade de Aveiro

Aveiro, Portugal
pbrp@ua.pt

Luis Almeida
Instituto de Telecomunicações,
Fac. Engenharia – Univ. Porto

Porto, Portugal
lda@fe.up.pt

Abstract - Distributed systems rely in communication networks,
typically a bus, in order to exchange messages and fulfill their
goals. However, message transmission is subject to interferences
that ultimately can lead to message corruption. In systems where
a high-reliability is sought, error recovery mechanisms can be
deployed in order to give the required reliability level, and this
can be done in the spatial or temporal domain. In the scope of the
FTT paradigm, and applied to the FTT-CAN protocol, the
authors have previously presented a time domain recovery
method using message retransmissions controlled by a server. In
this article we assess the impact of different scheduling policies
for the server, presenting a qualitative evaluation of the
alternatives, complemented by a simulation study, in order to
verify their advantages and weak points.

Keywords — transient errors; Time-Triggered; scheduling
policies; server

I. INTRODUCTION
Nowadays, large pieces of equipment or machinery use

several embedded nodes that can be physically distant and
must cooperate to fulfill a given objective, composing what is
known as a Distributed Embedded System (DES). These are
present in cars, planes, trains, medical equipment or in factory
plants, to name a few. A DES depends on exchanging
information between its nodes, this being accomplished by an
underlying communication network. Depending on the
specific characteristics of the application, e.g. required
bandwidth, criticality level or cost, the designer can choose
one of the many technologies available today.

From the multitude of available network technologies,
CAN [1] is still one of the most used networks, e.g. in the
automotive industry, with more than 700 million nodes sold
annually [2].

A common problem to all communication networks is the
occurrence of errors in the transmission of messages that can
compromise the correct system operation. The faults that can
lead to message errors are unavoidable and can be due to
electromagnetic interference, radiation, temperature variations,

loose connectors, etc. Faults can be classified as permanent or
transient, being the transient ones prevalent and the ones we
are interested in this paper.

To obtain tolerance to communication errors, spatial
redundancy, temporal redundancy or a combination of both
can be used. In spatial redundancy extra hardware (nodes and
buses) is needed in order to allow sending each message
through different paths, increasing the system complexity and
cost. As an advantage, this technique tolerates both permanent
and transient faults. Temporal redundancy consists in sending
a message and its replicas over the same path but in different
time instants. This technique does not require additional
hardware, but only tolerates transient faults.

This work focuses on Time-Triggered (TT)
communication, i.e., in which the network transmits its
messages in specified time instants, but using the Flexible
Time-Triggered paradigm (FTT) that combines a TT approach
with online traffic scheduling [3]. This feature allows using
temporal redundancy with message retransmissions triggered
by the occurrence of errors, being this in contrast to typical
static TT systems, where the retransmissions are pre-planned
and always occur, independently of the existence of errors,
leading to poor bandwidth efficiency. Our retransmission
mechanism is centrally controlled and the scheduling is done
dynamically and jointly with the system messages [4]. Upon
error detection, a server manages the retransmission of
messages, interacting with the message scheduler, attempting
to deliver messages affected by errors before its deadline, but
with a bounded and predictable interference on the remaining
messages.

Clearly, the server scheduling policy impacts both in the
retransmission recovery time and on the way the server
interferes with the other messages, implying that each server
scheduling policy presents a tradeoff between these two
parameters. In this paper we propose different policies for the
server scheduling, present their main characteristics and
analyze their implications.

2014 IEEE Emerging Technology and Factory Automation (ETFA)
978-1-4799-4845-1/14/$31.00 c©2014 IEEE

The paper is organized as follows. The related work is
presented in section II, followed by the system description in
section III, which includes a brief description of the FTT-CAN
protocol, the assumed fault model and the server
configuration. In section IV the alternative policies for the
server are presented, and in section V the policies are
assessed. Finally section VI concludes the paper.

II. RELATED WORK
Fault tolerance in classical Time-Triggered systems, e.g.

TTP/C [5] or FlexRay [6], when using temporal redundancy,
implies the use of extra slots that are statically allocated and
that are left unused when errors do not occur, leading to low
bandwidth efficiency. Even if optimization techniques are
used to minimize the number of used slots, like in [7], the
extra bandwidth for a specified reliability level can reach more
than 100% of the original bandwidth.

Another approach, a specific protocol proposed for CAN
[8], allows the use of some slots defined for TT traffic by
event-triggered traffic, when there are no TT messages to
transmit. This is achieved by assigning lower priority CAN
ID’s to event-triggered messages. Nevertheless, this protocol
suffers basically from the same problem as classic TT
systems, because these slots are statically allocated, although
with an improvement in average bandwidth efficiency.

III. SYSTEM DESCRIPTION
In this section we briefly describe the FTT paradigm and

FTT-CAN protocol, define the system, the assumed fault
model, the server and parameter choices.

A. FTT-CAN Protocol
The FTT-CAN protocol [3] is an instantiation of the

Flexible-Time Triggered paradigm on the CAN protocol [1].
In this paradigm, the global time is divided in Elementary
Cycles (EC) with a predefined duration LEC. The EC is
further divided in two disjoint windows, each reserved for a
particular traffic class. The nodes transmit autonomously
Event-Triggered traffic in the Asynchronous Window. The TT
traffic is transmitted in the Synchronous Window (SW), when
polled by a special message, the Trigger Message (TM),
transmitted by the Master node. The TM also marks the
beginning of the EC. The duration of the SW depends on the
traffic scheduled for each EC but it is upper bounded by a
configuration parameter – LSW - that must be set
appropriately to provide the necessary guarantees of
schedulability for the TT traffic.

The Master node is then responsible for scheduling the TT
traffic online and can, in this way, implement any scheduling
policy, e.g. Rate-Monotonic or Earliest Deadline First, thus
being very flexible and independent of the underlying
communication technology.

As said previously, the focus of this work is on the use of
temporal redundancy to recover transient errors. Due to the

high flexibility brought by the online scheduling characteristic
available in the FTT paradigm, it is possible to implement
distinct ways to recover transmission errors, namely by
scheduling the server with different techniques, which is the
topic of this paper.

B. System Definition and Fault Model
The system is composed by network nodes connected

through a simplex CAN bus. One of the nodes, the Master, is
responsible for scheduling all the time-triggered traffic and
also for implementing the error recovery mechanism. The
message set has n messages, each one characterized by a
period Ti, transmission time (including maximum stuff bits)
Ci, relative deadline Di and offset Oi.

A simple but effective way to model the arrival of faults in
the CAN bus is by using a Poisson model [9]. In this model
the mean time between faults is λ and the faults arrive at
random instants with an inter-arrival time that follows an
exponential distribution. The probability of having k errors in
the time interval t is given by equation 1.

 PሺX ൌ k, tሻ ൌ eି୲λሺtλሻ୩k! (1)

We also assume that λ is known and can be calculated from

experimental data, obtained for instance from the Bit Error
Rate (BER) values in [10], and that it is dependent on the
environment where the embedded system is deployed,
classified as aggressive, normal or benign environments.
These values are essential to correctly define the server
parameters, as described in the next section.

C. Server and its configuration parameters
A server is an entity that behaves like a periodic task and is

characterized by a period TS and capacity CS. The way that the
server is allowed to use its capacity and the time instants and
amount of capacity replenishment is dependent on the server
type [11]. The fault incidence in the server period, for a given
probability, is obtained through equation 1, using the
cumulative distribution function, allowing in this way to
choose the necessary capacity in order to recover all errors,
with a residual probability of non-recovery. This process was
described in a previous paper [4]. The chosen server was a
Deferrable Server (DS), mainly because of its simplicity and
reactivity, since its capacity may be used at any time.

IV. ALTERNATIVE SERVER SCHEDULING POLICIES
In our previous work [4], the server was granted with the

highest priority (Max_Pr) in a fixed priorities setting. The
rationale behind this option was scheduling the server
immediately, to allow the retransmissions to occur as soon as
possible, thus maximizing their likelihood of occurring before
the messages deadline (Algorithm 1).

Algorithm 1: Server Scheduling with Maximum Priority
Inputs: M, Detected Errors, Server Retransmission Queue

(SRQ), Ready Queue (RQ)
Output: Schedule for Next EC

1. For each message affected by Error or Omission
 Put it in the SRQ
 End
2. For each message in SRQ
 If server remaining capacity >= message size
 Move message from SRQ to the head of

 RQ and adjust server capacity
 End
 End
3. Build the EC Schedule
4. Put all retransmissions not dispatched back on SRQ and

adjust server capacity
5. Return the EC Schedule

Firstly all detected errors in the current EC are added to the

Server Retransmission Queue (SRQ). After that, messages in
the SRQ are moved to the Ready Queue (RQ), provided that
the server capacity is not exhausted (line 2). Under the
Max_Pr scheme, retransmissions are added at the head of the
RQ, giving them higher priority than all other messages. This
way these messages are the first ones to be scheduled,
minimizing their recovery time, as intended. Eventual message
retransmissions that do not fit in the SW are pushed back to
the SRQ (line 4). In both line 2 and 4 the server capacity is
updated accordingly. In line 5 the EC schedule is returned.

A. Motivational Examples
Despite being intuitive, assigning the highest priority to the

server is not the only option and may, in fact, not be the most
sensible one. For example, consider that a message instance
with a far deadline is affected by an error. Assigning the
highest priority to the server would cause the retransmission to
occur in the following EC, possibly delaying unnecessarily the
transmission of messages with shorter deadlines.

In order to gain some insight into this problem, we show
some exemplary scenarios, with and without errors, to observe
the behavior of the recovery mechanism and the different
types of interference produced by different server scheduling
policies. The message set used in the following scenarios is
detailed in TABLE I, where message deadlines are equal to
periods and priorities are assigned using the Rate Monotonic
policy. The transmission time of all messages is 0.2 time units,
resulting in a utilization of 55%.

Figure 1 shows the timelines corresponding to the
maximum priority policy, with and without errors (bottom and
top, respectively). The numbers below the line indicate the
message activation instants. This example illustrates the
scenario described above, in which an error in a message with
a longer period (m6) causes a delay of one EC on a message
with a shorter period (m5). This kind of interference is

unnecessary because message m6 could be retransmitted in the
following EC, without violating its deadline.

TABLE I : MESSAGE SET DEFINITION

Fig. 1. Max_Pr scheduling policy illustration; top: no errors; bottom:
with errors

An alternative policy, which prevents the priority inversion
scenario depicted above, consists in preserving the message’s
priority during retransmissions (Same_Pr). In terms of
implementation, such policy is easily accomplished, since it
consists in handling retransmissions in the same way as
regular messages. This requires changing line 2 of Algorithm
1, only, which becomes “Insert message retransmission in the
proper position of the RQ, according to its priority”. Since, in
this case, the messages in the SRQ are scheduled together with
the remaining messages, following a system-wide fixed-
priority scheduling policy, message retransmissions do not
interfere with higher priority messages, as desired.

On the other hand, the error recovery latency depends on
the priority of the message affected by the error and on the
instantaneous system load. Consequently, this scheduling
policy has a behavior that is dual of the Max_Pr scheme. For
this reason it may lead to unnecessary deadline misses, as
illustrated in Figure 2, where the message set is based on
TABLE I, except in what concerns the period of m6, which is
reduced from 4 to 3 time units.

Fig. 2. Max_Pr (top) vs Same_Pr (bottom) scheduling policies
illustration

In this case, the message retransmission was unnecessarily
delayed, leading to a deadline miss (Figure 2, bottom).
Conversely, if the Max_Pr scheme was used, no deadline
would be missed (Figure 2, top).

Msg n T Msg n T

1 2 4 2

2 2 5 2

3 2 6 4

0 1 2 3 4
1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5

1..5 1..5 1..5
6 6

1 2 3 4 5 6 s6 1 2 3 4 5 1 2 3 4 5
s6

1..5 1..5 1..5
6 6

0 1 2 3
1 2 3 4 5 6 s6 1 2 3 4 5 6

s6
1..5 1..5
6 6

msg 6 misses deadline
1 2 3 4 5 6 1 2 3 4 5 6

1..5 1..5
6 s6 6

Reasoning about the scenarios shown above, it can be
concluded that both scheduling schemes have a common
problem: the scheduling decisions regarding message
retransmissions do not take into account the dynamic system
state and thus are suboptimal. This observation suggests that a
possible way of improving the system performance may be
achieved by using the message slack as a scheduling decision
parameter. One simple way of obtaining this behavior consists
in using the Same_Pr scheme by default, in order to prevent
priority inversions as much as possible, and assigning the
maximum priority to the server whenever the message at the
head of its retransmission queue has a slack of one EC, in
order to reduce the number of deadline misses affecting
retransmissions of low-priority messages. This scheme,
designated Same_Pr_DMP, is described in Algorithm 2. Note
that Algorithm 2 shows only the differences with respect to
Algorithm 1.

Algorithm 2: Server Scheduling with Same Priority with
Deadline Miss Protection
2. For each message in SRQ
 If server capacity >= message size
 If absolute deadline > Next EC
 Insert message in the RQ, with normal

 priority
 else
 Insert message at the head of the RQ
 End
 End
 End

Though simple and easy to implement, as it requires only
one additional test with respect to the Same_Pr scheme, the
Same_Pr_DMP policy is still suboptimal as it neglects the
message’s slack until a border condition is met, namely the
last EC before the deadline.

Conversely, the Earliest-Deadline First [12] policy is a
scheduling policy that takes into account the dynamic state of
the system, giving priority to the tasks with more urgent
deadlines. This is the feature that makes EDF optimal with

respect to meeting deadlines, while allowing higher utilization
factors than fixed-priority schemes. This feature is particularly
well suited for the error server scheduling on FTT-CAN. As
mentioned before, errors may affect both messages with short
or long deadlines and, due to their random nature, it is not
possible to forecast which kind of requests will be submitted
to the server, thus optimum decisions cannot be fixed nor
taken offline.

These observations, together with related work that
proposes hierarchical scheduling using different scheduling
policies at different levels in the scheduling process [13], led
to the proposal of the EDF scheduling policy (for the server
only), in which the deadlines of the message retransmissions
are compared with the ones of normal messages, being
scheduled as soon as their deadline is shorter than the one of
any other of the normal ready messages.

In this way, retransmissions have a minimum interference
on the other messages when their deadlines are farther away,
but gain importance gradually, i.e., increase their priority, as
their deadlines approach, as desired. The operation of the EDF
policy is described in Algorithm 3.

As it will be shown in Section V, the EDF scheduling
policy delivers the best results in terms of indirect
interference, outperforming the other policies in many cases,
as expected. However, it incurs in a relatively high overhead,
since it requires that both the retransmission queue and the
ready queue are sorted by deadline and insertions on the ready
queue must also be made according to the deadline.
Considering that CAN is often used in embedded systems
based on extremely resource-constrained hardware, such
overhead can be prohibitive. Therefore the cost-benefit
relation must be carefully evaluated.

Figure 3 presents an example of the different behavior in
terms of recovery latency and indirect interference of the four
proposed server scheduling policies, showing a scenario in
which only the EDF scheme can recover a message without
causing any deadline miss.

Fig. 3. Applying different server scheduling policies. Top – no errors; Second – Max_Pr; Third – Same_Pr or Same_P_DMP; Fourth – EDF

n T Ci
1 10 0.8
2 10 0.8
3 10 0.8
4 10 0.8
5 10 0.8
6 15 0.8
7 15 0.8
8 25 0.8
9 25 0.8
10 25 0.8
11 25 0.8
12 25 0.8

13 25 0.8

LEC = 5 ms; LSW = 4 ms

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 11 12 13 1 2 3 4 5 8 9 10 11 12 1 2 3 4 5 6 7 13

1 2 3 4 5 6 7 8 9 10 S8 1 2 3 4 5 6 7 11 12 1 2 3 4 5 8 9 10 11 12 1 2 3 4 5 6 7 13

ms g 13 miss es deadl ine

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 S8 11 12 1 2 3 4 5 8 9 10 11 12 1 2 3 4 5 6 7 13

ms g13 miss es deadl ine

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 S8 7 11 12 13 1 2 3 4 5 6 8 9 10 11 1 2 3 4 5 6 7 12 13

1..5 1..5 1..5 1..5
6..7 6..7 6..7
8..13 8..13

Algorithm 3: Server Scheduling with EDF Priority
2.1. Build normal schedule of next EC – RQ - using normal

scheduler
2.2. Sort SRQ by deadline
2.3. Sort RQ by deadline
2.4. For each message in SRQ
 If server capacity >= message size
 Insert message in the RQ,

 sorted by deadline
 End
 End

V. RESULTS
In this section we present a set of simulation results that

aim at evaluating the performance and correctness of the
proposed algorithms. To this end, in addition to the more
obvious numeric results regarding the number of recovered
and non-recovered errors, we also include numerical results
that allow assessing the response-time and internal effects of
the diverse server scheduling policies.

The simulations were carried out on the FTT-CAN
simulator presented in [4], which was extended with the server
scheduling policies presented in this paper.

To evaluate the behavior of each server scheduling policy,
we have used message sets obtained from the literature [14],
[15] and also from an electric vehicle prototype [16]. The
results obtained with the various message sets are analogous
so, due to space limitations, only the results of the first
message set are presented.

The message set is defined in Table II, where ID is the
CAN message identifier (lower number means higher
priority), T is the period in number of ECs and DLC the
message size, in bytes.

TABLE II. MESSAGE SET UPDATED_SAE

For each configuration, we start with the minimum LSW

that allows the transmission of messages within their
deadlines, without considering bus faults. Afterwards we
generate the error pattern, using a BER 100 times greater (λ =

10 faults/s) than the scenario experimentally encountered in
aggressive environments [10], in order to stress the error
recovery mechanism. Then the system is simulated for each
one of the alternative policies, retransmissions included, and
the corresponding numerical values stored. Finally, the LSW
size is increased and the whole process is repeated.

A. Recovered Errors and Interference
Table III presents the deadline misses suffered by messages
affected by errors, for the diverse policies. The presented
results correspond to the average value of ten runs of the
simulator, each one done for 2 million ECs, where the BER
used in the fault generator is rather high in order to get a
significant number of errors per simulation.

The first line shows the total number of deadline misses,
while the second one shows the number of errors that affected
messages that had no slack, and thus that weren’t recoverable
by any of the mechanisms.

We can see that for Max_Pr and EDF policies all misses
correspond to unrecoverable messages, i.e. messages that
suffer an error in the EC in which they have their deadline. For
the Same_Pr policy, as the server inherits the original message
priority, retransmissions can be delayed by several cycles and
eventually lose their deadlines, as shown in the scenario
depicted in Figure 4. This situation happened in fact, as
attested by the relatively large number of deadline misses. As
expected, the Same_Pr_DMP policy significantly attenuates
this problem, though not eliminating it.

TABLE III. DEADLINE MISSES DUE TO DIRECT INTERFERENCE (LSW=70%)

Unrecovered by the Server
 Max_Pr Same_Pr Same_Pr_DMP EDF
Total misses 29 510 101 29
Unrecoverable
misses

29 31 31 29

Table IV shows the number of deadline misses suffered by

messages not affected by errors, thus due to the server
execution - indirect interference. As expected, the EDF policy
has the best performance in this criterion, since it only
schedules the retransmissions when they are more urgent (i.e.
have shorter deadlines) than the original messages.

It should be remarked that the presented results depend
strongly on the bus load. For instance, for LSW=72.5%, in this
message set, there is no difference between the diverse
policies, because the server execution does not cause a
significant interference on the original messages.

TABLE IV. DEADLINE MISSES DUE TO INDIRECT INTERFERENCE (LSW=70%)

Deadline misses in original messages
Max_Pr Same_Pr Same_Pr_DMP EDF

1133 1133 1133 1093

ID T DLC ID T DLC ID T DLC
1 20 1 13 3 1 25 5 2
2 2 2 14 3 4 26 5 2
3 2 1 15 3 4 27 5 4
4 2 2 16 3 4 28 5 5
5 2 1 17 4 1 29 5 3
6 2 2 18 4 2 30 20 1
7 2 1 19 4 6 31 40 4
8 2 1 20 4 2 32 40 1
9 3 1 21 4 3 33 40 1

10 3 1 22 4 2 34 400 3
11 3 1 23 5 2 35 400 1
12 3 1 24 5 2 36 400 1

B. Server Recovery Time
Table V shows the average server response times for each

one of the server scheduling policies. We can see that the
Max_Pr policy shows the lowest value, always equal to one
EC. There are a few exceptions, too small to cause visible
effects in Table 5, which correspond to scenarios in which
errors affect message retransmissions. On the other hand, the
Same_Pr/Same_Pr_DMP policies show the worst
performance, being EDF a good compromise between these
two extremes. We can also observe that the 3 initial schemes
have a similar behavior regarding the high priority messages,
which fit in the LSW even when the server executes, as
expected. On the other hand, messages that have lower priority
than these ones see their recovery time increasingly degrading
for EDF, Same_Pr_DMP and Same_Pr, by this order. This
behavior is also expected because, for these policies, the
recovery can be delayed, something that does not happen with
Max_Pr.

Table V. SERVER AVERAGE RESPONSE TIME

VI. CONCLUSIONS
In this paper we have explored alternative scheduling

policies applied to a temporal redundancy scheme, in the
scope of the FTT-paradigm, using retransmission servers.
After the problem definition, we presented a few motivational
scenarios, which show that different server scheduling policies
have a real impact in the recovery time and in the interference
caused by the server in messages not affected by errors.

Then, the algorithms that correspond to each server
alternative were presented and their impact in terms of
complexity was qualitatively evaluated. Afterwards, we
presented a numerical evaluation of the proposed algorithms,
obtained via simulation, concerning the efficiency of
recovering erroneous transmissions. The obtained results show
that the relative performance of the diverse algorithms
depends on the particular scenarios and criteria. For instance,
if the predominant criterion is minimizing the recovery time,
the best scheduling policy is Max_Pr at the expense of a
higher global number of messages with missed deadlines than
EDF. The Same_Pr policy showed the worst behavior, which
can be significantly improved by using deadline miss
protection. Ultimately, it is the designer that must evaluate
carefully the pros and cons of each scheduling server policy
based on the application criteria.

As future work, we will carry out an analytical evaluation
of each policy, as well as a more detailed characterization of
their associated overhead, including optimized implementation
techniques, e.g. the ones presented in [17].

ACKNOWLEDGMENTS
This work was partially supported by the Portuguese

Government through FCT - Fundação para a Ciência e a
Tecnologia in the scope of project Serv-CPS -PTDC/EEA-
AUT/122362/2010 and grant CodeStream PTDC/EEI-
TEL/3006/2012.

REFERENCES
[1] Controller Area Network (CAN) specification - version 2.0., Bosch

GmbH, 1991
[2] CAN in Automation site, http://www.can-cia.org
[3] L. Almeida, P. Pedreiras and J.A. Fonseca, “The FTT-CAN protocol:

Why and how”, IEEE Transactions on Industrial Electronics, 49 (6),
December 2002

[4] L. Marques, V. Vasconcelos, P. Pedreiras and L. Almeida, “Error
Recovery in Time-Triggered Communication Systems Using Servers”,
8th IEEE International Symposium on Industrial Embedded Systems,
June 2013, Porto, Portugal.

[5] H. Kopetz and G. Bauer, “The Time Triggered Architecture”, Proceedings
of the IEEE, 91(1), 2003

[6] FlexRay Consortium, "FlexRay Communications System - Protocol
Specication Version 2.1 Revision A," http://www.flexray.com/, December
2005

[7] B. Tanasa, U. Bordoloi, P. Eles and Z. Peng, "Scheduling for fault-tolerant
communication on the static segment of FlexRay", Proceedings of 31st
IEEE Real-Time Systems Symposium, 2010.

[8] J. Kaiser, B. Cristiano and C. Mitidieri. "COSMIC: A real-time event-
based middleware for the CAN-bus", Journal of Systems and Software
77.1, 2005

[9] I. Broster, A. Burns, G. Rodríguez-Navas, “Comparing Real-time
Communication under Electromagnetic Interference”, Proceedings of the
12th Euromicro Conference on Real-Time Systems (ECRTS’04)

 [10] J. Ferreira, A. Oliveira, P. Fonseca and J.A. Fonseca, "An Experiment to
Assess Bit Error Rate in CAN", Proceedings of 3rd International
Workshop of Real-Time Networks , 2004

[11] G. C. Buttazzo, Hard Real-Time Computing Systems - Predictable
Scheduling Algorithms and Applications, Springer, 2011

 [12] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment”, J. ACM 20, 1 (January 1973), 46-61

[13] M. G. Harbour and JC Palencia, “Response time analysis for tasks
scheduled under EDF within fixed priorities”, 24th IEEE Real-Time
Systems Symposium, 2003.

 [14] U. Mohammad and N. Al-Holou, “Development of An Automotive
Communication Benchmark”, Canadian Journal on Electrical and
Electronics Engineering Vol. 1, No. 5, August 2010

[15] P. Castelpietra, Y.-Q. Song, F. Simonot-Lion and O. Cayrol,
“Performance evaluation of a multiple networked in-vehicle embedded
architecture”, Proceedings of IEEE International Workshop on Factory
Communication Systems, 2000

 [16] F. Santos, J. Trovão, A. Marques, P. Pedreiras, J. Ferreira, L. Almeida,
M. Santos, “A modular control architecture for a small electric vehicle”,
11th IEEE International Conference on Emerging Technologies and
Factory Automation, Prague, Czech Republic, 2006

[17] M. Short, “Improved task management techniques for enforcing EDF
scheduling on recurring task sets,” Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium,
Stockholm, Sweden, 2010.

msg nº 1 2..18 19 20 21 22 23 24
Max_Pr 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Same_Pr 1.000 1.000 1.001 1.001 1.070 1.355 1.558 1.478
Same_Pr_DMP 1.000 1.000 1.001 1.001 1.070 1.355 1.558 1.478
EDF 1.655 1.000 1.000 1.000 1.000 1.000 1.179 1.166

