
Performance Analysis of Master-Slave Multi-Hop
Switched Ethernet Networks

Mohammad Ashjaei, Moris Behnam, Thomas Nolte
Mälardalen University, Västerås, Sweden

mohammad.ashjaei@mdh.se

Luis Almeida
IT / DEEC, University of Porto, Portugal

lda@fe.up.pt

Abstract—There is an increasing trend towards using switched
Ethernet in real-time distributed systems due to features like
absence of collisions and high throughput. Nevertheless, a few
problems persist, in particular related to priority inversion and
limited length in queues. In this paper we focus on a protocol
which uses a master-slave technique over standard switched
Ethernet in order to overcome such problems, namely FTT-SE
protocol. We present an improved response time analysis for such
a network and we compare, analytically and with simulations,
the results achieved with Network Calculus on a worst-case
scenario. We show that our proposed response time analysis gives
tighter bounds compared to Network Calculus. Moreover, we
compare the performance of different solutions to scale the FTT-
SE protocol with respect to the bandwidth utilization. Finally, we
propose a new architecture to improve the average performance
of master-slave switched Ethernet networks.

I. INTRODUCTION

The complexity of the communications within distributed
embedded systems is rapidly increasing due to the growing
number of nodes and larger amount of exchanged data, which
impose challenges when timeliness must be enforced.

Recently, the interest on using Switched Ethernet technol-
ogy in distributed embedded systems has increased because of
its wide availability, low cost, absence of collisions and traffic
segregation. Nevertheless, using COTS (Commercial Off-The-
Shelf) switches in time critical applications may affect the
possibility of guaranteeing real-time behavior. Basically, the
queues in the switch ports may overflow due to uncontrolled
arrivals of packets, a situation that, in a worst-case, leads to
drop packets. Moreover, COTS switches typically have FIFO
queues that can generate long blocking times for urgent pack-
ets. This latter problem can be partially mitigated prioritizing
the traffic and using separate queues for different priorities.
Nevertheless, the IEEE802.1D standard considers up to 8
priority levels, which is too few to support effective priority
scheduling.

A more effective solution to such problem is controlling
the traffic submitted to the switch avoiding queue build up
and using adequate traffic scheduling policies. This can be
achieved with a master-slave approach. In this paper we
use the FTT-SE protocol [1], which is a bandwidth-efficient
master-slave protocol based on the Flexible Time-Triggered
(FTT) paradigm. In addition, the FTT-SE protocol handles all
types of message streams including real-time periodic, real-
time sporadic and non-real-time traffic, by defining and using
specific reserved bandwidth for each type of message streams
and thus providing temporal isolation between them.

However, the FTT-SE protocol was initially developed for
a network containing a single switch with a set of directly
connected nodes. Recently, two different architectures were
presented to extend the protocol to networks consisting of mul-
tiple switches connected in a tree topology. In one architecture,
the network is controlled by a single master connected to the
top of the network hierarchy [2], whereas in the second one
each switch has an attached master that controls the respective
traffic [3]. For the second case, the work in [4] presents a
method based on Network Calculus to compute the traffic end-
to-end delay.

In this paper, we comparatively assess the two referred
architectures, i.e., single-master and multi-master, and we pro-
pose a new hybrid one that is better suited to large networks.
Therefore, the main contributions of this paper are:

1) We complement the multi-master approach with an im-
proved response time analysis and we compare the upper
bounds obtained by this method with those obtained with
Network Calculus and those observed in experiments
with a simulation tool [5] on a worst-case scenario.
We show that the proposed response time analysis gives
tighter upper bounds compared to Network Calculus.

2) In addition, we compare the performance of single-
master and multi-master architectures with respect to
bandwidth utilization and scheduler overhead.

3) Finally, we propose a new hybrid architecture suited to
large scale networks, based on a combination of the two
previous ones. Furthermore, we also present a response
time-based worst-case end-to-end delay analysis for the
new architecture.

The rest of the paper is organized in the following way. The
next section discusses some related work. Section III describes
the basics of the FTT-SE protocol. Then, Section IV illustrates
the system model while Section V presents the traffic delay
analysis and shows the comparison between response time and
Network Calculus on a worst-scenario experiment. Moreover,
Section VI shows the comparison evaluation of two different
architectures. Section VII presents a new architecture includ-
ing the evaluation and end-to-end delay analysis, and Finally
Section VIII concludes the paper and presents the future work.

II. RELATED WORK

The literature on switched Ethernet is vast and there have
been many works addressing its adequacy to real-time com-
munication. We can find from relatively old research proposals

such as EtheReal [6] and the EDF Scheduled Switch [7],
both based on channel reservations supported on enhanced
switches, to recent ones such as the enhanced switches pro-
posed in [8] that combine synchronous and asynchronous
traffic with rate protection.

In the meanwhile, many solutions to real-time Ethernet
actually made it to the market, such as TTEthernet and
PROFINET IRT, both optimized for time-triggered operation,
and EtherCAT, optimized for quick forwarding with on-the-
fly update of the Ethernet frames while traversing the nodes.
AFDX is also in this category, with enhanced forwarding and
rate control based on static forwarding tables and rate filters,
and has been used mainly in avionics. More recently, a new
standard has been created, named Ethernet AVB (Audio-Video
Bridges), which supports channel reservations with bounded
end-to-end latency, but with practically no market support, yet.

These solutions using enhanced switches present improved
performance but result in high cost and lower availability than
current COTS Ethernet switches (IEEE802.1D). Thus, several
solutions were also researched and eventually marketed, based
on overlay protocols that control the traffic submitted to COTS
switches. This is the case of Ethernet POWERLINK and FTT-
SE, both master/slave approaches, the latter of which will be
used in this paper due to its superior bandwidth efficiency and
traffic scheduling flexibility.

Concerning the timing analysis of multi-switch Ethernet
networks, several methods are also available. For example,
Network Calculus is used in [9] to analyse the end-to-end
delays in FTT-SE using a single master multi-switch topology
and in [10] for networks of standard Ethernet switches. The
work in [11] presents three methods to derive the end-to-end
traffic delays in a multi-switch AFDX network, namely using
Network Calculus, network simulation and model checking,
among which Network Calculus exhibited a little higher pes-
simism. A tighter timing analysis for AFDX networks can be
achieved using the trajectory approach as reported in [12].

Network calculus is also used in [13] to derive end-to-
end traffic delays for Ethernet AVB, showing a case study
based on an automotive infotainment system. The work in
[14] presents a worst-case delays verification of in-vehicle
Ethernet networks using the same analytical framework to
generate upper bounds and checking them against experiments
in worst-case scenarios.

A different approach is followed in [15] and [16] that
derive end-to-end delay bounds for a single flow in FIFO
multiplexed sink-tree networks using a modified Network Cal-
culus framework. These works use partitioning of a network
topology into a set of logically separated sink-trees having
egress nodes at the root and ingress nodes at the leaves. The
traffic is aggregated in nodes by introducing a FIFO policy
called aggregated scheduling. A class of service curves is
introduced to determine the service that is received in an
aggregate scheduling network. Furthermore, the work in [17]
utilized the mentioned method to investigate an admission
control in sink-tree networks.

As can be seen from the brief survey above, worst-

case response-time analysis of networks of standard Ethernet
switches is unexplored to a large extent. In this paper we
further explore this kind of analysis applied to a master-slave
network of switches, running the FTT-SE protocol with one
master controlling the traffic at each switch, and we show that
we can obtain tighter results than with Network Calculus.

III. FTT-SE PROTOCOL

FTT-SE (Flexible Time-Triggered Switched Ethernet) is
a bandwidth efficient master-slave protocol that was origi-
nally developed for small networks using a single Ethernet
switch [1]. Its extension to larger networks with multiple
switches was recently addressed with two main approaches
presented in [2] and [3]. In this section we sketch the second
approach which uses multiple-master nodes to control the
traffic transmission through the network.

The FTT-SE network consists of multiple switches con-
nected together in a tree topology, each with its own master as
illustrated in Figure 1. The switch in the top of the hierarchy
is called the root switch. Moreover, we define a sub-network
as the ensemble of each switch along with all nodes that are
directly connected to it, e.g., SW1, M1, S1 and S2 in Figure 1.
Each sub-network is a parent for the lower level sub-networks
that are attached to it. The group of sub-networks that have
the same parent sub-network is called a cluster, e.g., cluster2
in Figure 1. The only exception is the root sub-network that
is considered included in its children cluster since it cannot
be accounted as one cluster itself.

M1

M3 M2

SW1

SW3 SW2

SW5 SW4

M5
M4

Cluster2

Cluster1

S1

S5
S3

S7 S6

S2

S4

Fig. 1. The FTT-SE Network

In addition, we have defined two categories of traffic. A
message that is transmitted within a sub-network is called
local, otherwise it is called global.

As in any FTT protocol, the master schedules the messages
on-line according to any desired policy, e.g. Fixed Priority
Scheduling. The scheduler is invoked periodically, exactly
once every interval of time called Elementary Cycle (EC).
Each EC, which is configured off-line, is mainly divided in
two windows, one to manage the protocol called Initialization
Time and another one to transmit the data messages which
is called Data Transmission Window (Figure 2). In the multi-
master architecture, the data transmission window is further
partitioned among all traffic types, i.e. local/global and syn-
chronous/asynchronous. The global asynchronous window is

still divided among the clusters, e.g. Cluster1 and Cluster2 in
Figure 2.

X X GTM TM asynchTM Local SIG Global SIG A B

M1
Switch out

Switch In

M3

S4

M4

S6

1

3

3

4

4

1

3

3

TRD

Initialization Time Data Transmission Window

Synchronous Window Asynchronous Window

Local Global Local Global

Cluster1 Cluster2

A B

A

B Switch out

Switch In

Switch out

Switch In

Switch out

Switch In

Switch out

Switch In

Elementary Cycle

Fig. 2. The FTT-SE Elementary Cycle

This architecture requires that the ECs of all masters are
synchronized. The solution we currently use, for simplicity, is
to have a particular message, called Global Trigger Message
(GTM), being broadcast by the root master and propagated
down the entire network. The remaining masters synchronize
upon receiving the GTM and start their local ECs. In the event
that a GTM is lost, the receiving master times out, triggers its
own local EC and generates a GTM itself, for the clusters
below it in the topology tree. Certainly, other solutions are
possible, e.g., using clock synchronization among masters. The
selection of the best global synchronization approach is kept
as future work.

Algorithm 1 describes the operation of a generic master
node. The only different master is the root master, which
follows a similar algorithm except that its cycle is timed, not
synchronizing with the GTM.

The main loop of the master nodes starts with broadcasting
the GTM for the lower level masters (lines 7). Then the local
EC is triggered, broadcasting the Trigger Message (TM) to
all the nodes in its sub-network (line 8) and the asynchronous
TM (asynchTM) to its children sub-networks (line 9). The TM
conveys the IDs of the scheduled local/global synchronous and
local asynchronous messages (e.g., TM4 from M4 to S6 in
Figure 2). The global asynchronous messages, however, are
scheduled by the parent master of each cluster based on the
dedicated window allocated for that cluster (e.g., asynchTM3
from M3 to S6 in Figure 2).

Unlike synchronous messages, activation of asynchronous
ones is unknown in advance and can occur at any time.
A signaling mechanism [18] allows the slaves to notify the
master of pending requests using a Signaling Message (SIG)
that is transmitted in the beginning of the EC (e.g. A for
local asynchronous and B for global asynchronous messages
in Figure 2). Therefore, each master collects the local SIG
messages of its sub-network and the global ones from its
cluster (cycle starting in line 11) and updates the ready queues
for all types of traffic (lines 18 and next). Then, the master
node starts to pick the messages from the head of the queues
until no more messages fit in the respective window and
computes the TM and asynchTM for the next EC (lines 21

Algorithm 1 Generic Master Node
1: InitializeMaster()
2: T M = initialT M
3: asynchT M = initialAsynchT M
4: receive(GT M) //sync with GTM
5: timeOut = currentTime+EC+waitTime
6: loop
7: send(GT M)
8: send(T M)
9: send(asynchT M)

10: //wait for all SIG messages
11: waitSIG = currentTime+SIGwindow
12: while currentTime < waitSIG do
13: end while
14: while inputBu f f er(SIG∗) do
15: //read all received SIG messages
16: receive(SIG∗)
17: end while
18: update(LocSyncQ,LocAsyncQ)
19: update(GlobSyncQ,GlobAsyncQ)
20: //prepare TM and asynchTM for next EC
21: T M = schedule(LocSyncQ,LocAsyncQ,GlobSyncQ)
22: asynchT M = schedule(GlobAsyncQ)
23: // sync with GTM for next cycle
24: receive(GT M, timeOut)
25: timeOut = timeOut +EC
26: end loop

and next).
At the end of the cycle, the master synchronizes again with

the GTM to trigger the next cycle (lines after 23). In case the
GTM does not arrive in time, a time out occurs and triggers
the cycle anyway. The timeout is initialized with an offset
waitTime in order to keep track of GTM receiving timeout.

Note that the protocol entails several broadcast messages,
namely the GTM, TM and asynchTM. Their dissemination,
however, is confined by appropriate configuration of Virtual
LANs (VLANs) so that they do not create undesired inter-
ference outside their domain. For example, each sub-network
has an associated VLAN that confines the broadcast of the
associated TM. The masters in a cluster and the parent master
are also integrated in another VLAN within which the cluster
parent master broadcasts the GTM and the asynchTM.

The algorithm of the slave nodes is significantly simpler
as shown in Algorithm 2. The main loop is synchronized
on the reception of the TM and asynchTM (lines 3 and
next). Concurrently (despite the sequential representation for
convenience), the slaves send their SIG messages to their
master (line 5). Then, they decode the TM and asynchTM
to determine which data messages (ID) they must transmit
in the current EC (line 6). This process takes a time that
depends on the processing speed of the slave node called
turn around time (TRD) (Figure 2). Afterwards, the slaves
initiate the transmission of the scheduled data messages (lines

8 and next) and the reception of the data messages sent by
others (lines 12 and next). These two activities also happen
concurrently, despite the sequential representation.

Algorithm 2 Slave Node
1: InitializeSlave()
2: loop
3: receive(T M) //wait on TM
4: receive(asynchT M)
5: send(SIG)
6: (ID[1..m],m) = decode(T M,asynchT M)
7: //send all DATA messages inTM and asynchTM
8: for i = 1→ m do
9: send(ID[i])

10: end for
11: //read all received DATA messages
12: while inputBu f f er(DATA∗) do
13: receive(DATA∗)
14: end while
15: end loop

Note that the windows inside the EC (Figure 2) are consid-
ered for traffic scheduling purposes, only, particularly to bound
the amount of traffic of each type that can be transmitted every
EC. At the time of transmitting the data messages scheduled
for a given EC, they are all sent as soon as possible, as shown
in the send cycle in Algorithm 2, line 8 and following.

A. Scheduling Algorithm

The main aim of the master nodes is to schedule traffic on-
line without causing overrun in the EC, i.e., the scheduled
traffic must be received before the end of the EC. This
is important to enforce the master traffic scheduling policy
without interference of the management policy used by the
switch in its queues. The scheduler in a master node picks the
messages from the ready queues of all traffic types and checks
whether they fit in their dedicated window in that EC. This
procedure continues until the last message in the ready queues.
The unscheduled messages are kept in the ready queues for
the next ECs. Note that the master node considers an idle time
in each transmission window to prevent overrun of messages
in the allocated window.

To keep track of the utilization of the windows in each
link connecting to the switch (assuming common full duplex
switches), the master considers two bins per link and per
window, one bin representing the uplink (node to switch)
and the other bin the downlink (switch to node). Then, the
scheduler starts from the higher priority messages and fills-
up the bins associated to the links in the message path
while considering the delays imposed by the switching itself,
namely store-and-forward and switch latency delays, and the
interference caused by other traffic.

Considering again the example in Figure 1, assume that two
synchronous messages, m1 and m2, are ready to be transmitted
from S1 to S4 and S2 to S4, respectively. These two messages

cross two different links and share two other links. Figure 3
shows the bin corresponding to the downlink of S4.

S4 Link bin
c

S4 Link bin
b

m1

switching
delay

S4 Link bin
a

m2 switching
delay

m1 trans.
time

m2 trans.
time

S4 Link bin
d

m2

switching
delay

m1 trans.
time

m2 trans.
time

m1

switching
delay

m1 trans.
time

m1

switching
delay

m1 trans.
time

m2 trans.
time

Fig. 3. The bin representing the downlink SW3 to S4

Assuming m1 has higher priority, the scheduler fills-up first
the bin with m1 transmission time plus its switching delay
resulting from crossing SW1 and SW3 (Figure 3.a). Then,
the scheduler checks m2, realizing that its switching delay is
shorter than that of m1 (Figure 3.b). Note that the switching
delays affect messages transmitted in sequence only once, in
fact, the longest such delay, only. Thus, there is no need to
add the switching delay of m2 in the bin (Figure 3.c). If the
switching delay of m2 was larger than the one for m1, the
scheduler would account m2 switching delay instead (Figure
3.d). In general, in each EC the scheduler picks the maximum
switching delay among the messages that fit in that EC. This
mechanism will be used to develop the response-time analysis
shown further on in this paper.

IV. SYSTEM MODEL

In this paper, we use the real-time periodic model to
present synchronous and asynchronous messages, which is
characterized by the following tuplet:

mi = mi(Ci,Di,Ti,Oi,Si,Dsi,Ri,sni) (1)

In this tuplet, Ci is the transmission time of the message, Di
is the deadline and Ti is the period of the message, both pre-
sented as integer number of ECs. We assume the constrained
deadline model, i.e. Di ≤ Ti. Moreover, Si and Dsi are the
source node and destination node of the message, respectively
(we currently restrict our analysis to unicast streams). Also,
Oi denotes the offset of the message, Ri is the set of switches
that the message crosses during its transmission and sni is
the number of switches in the Ri set. The FTT-SE protocol
supports both synchronous and asynchronous traffic. Thus, we
model both with the same tuplet in which for asynchronous
messages Ti is the minimum inter-arrival time and Oi is
unspecified. Moreover, the messages scheduling is based on
fixed priorities and these can be implicitly set according to
Rate-Monotonic, Deadline-Monotonic or any other criteria
reflected in the indexes.

In addition, the switches are assumed to be Commercial Off-
The-Shelf (COTS) having several parallel FIFO queues with
different priority levels for each output port. The switches are
considered as store-and-forward and non-blocking, i.e., they
do not build up queues in the input ports. We assume two
different components for switching delays, namely the store-
and-forward (SFD) delay and the switch relaying latency (∆).

V. TRAFFIC DELAY ANALYSIS

In this section we compute the end-to-end delay of mes-
sages in the multi-master FTT-SE architecture. The FTT-SE
scheduling is based on reserving a bandwidth for each type of
messages that is provided periodically every EC. Within each
reservation a scheduling policy is used to select the messages
to be transmitted. This model is equivalent to the hierarchical
scheduling model presented in [19] and the associated analysis
based on a request bound function (rb f) and a supply bound
function (sb f) is more suitable for such a network. Moreover,
in this section we validate the proposed analysis and compare
with Network Calculus based analysis presented in [4].

A. Worst-Case Delay Analysis

The rbfi(t) represents the maximum load generated by mi
and all the higher priority messages during the time interval
[0, t]. It is computed by summing the transmission time of
mi with all delays that mi may suffer during its transmission
as shown in (2), where Wli is the maximum time that mi is
blocked by other messages in each link in its route from source
to destination node that we call Shared Link Delay. Also, Wri
denotes the time which mi is blocked due to the messages
which do not share links with mi, yet might interfere with mi
as will be explained later and we call that Remote Link Delay.

rb fi(t) =Ci + sni× (SFDi +∆)+Wli(t)+Wri(t) (2)

Shared Link Delay. Message mi, under analysis, may be
delayed at each link in its route while crossing switches due
to the interference from all higher priority messages that share
those links with mi. To avoid accounting for the same message
multiple times, all messages that caused this delay in the
previous links are excluded in the current link. Moreover, the
store-and-forward and switch latency delays of the messages
generating the Shared Link Delay are collaborating to block
the message under analysis. The latter is due to the scheduling
algorithm in which the scheduler fills up higher priority mes-
sages in the respective bin considering their store-and-forward
delays, thus the message under analysis will be scheduled over
those delays in that bin. Therefore, Wli is calculated as shown
in (3), where hp(mi) is the set of messages with priority
higher than that of mi and WT (mi) is the set of messages
with a type similar to that of mi, i.e., periodic/aperiodic or
synchronous/asynchronous traffic as mi.

Wli(t) = ∑
∀ j∈[1,n], j 6=i
∧ R j∩Ri 6=0
∧ m j∈hp(mi)
∧ m j∈WT (mi)

d t
Tj
e(C j + sn j× (SFD j +∆)) (3)

Remote Link Delay. The message that do not share links
with mi may still delay mi indirectly through other messages.
To show this effect, let us consider the following example,
referring to the network shown in Figure 1.

We define four global messages, m1 is transmitted from S1
to S4, m2 is sent from S2 to S5, m3 is transmitted from S7

to S5 and m4 is sent from S6 to S4. We assume that m1 has
the lowest priority among the messages and m2 +m3 can be
scheduled in one EC. Let us consider that m1, m2 and m3 are
activated simultaneously in the first EC and m4 is activated in
the second EC. Also, m3 is started to transmit with an offset
in the source node due to other higher priority messages in
the source node of m3. The scheduling window for the first
and the second ECs is depicted in Figure 4.

S1

Transmission Window

S2

Link sw1-sw3

S5

S7

Link sw5-sw3

S4

m1

m1

m2

m2

m2

m1

m3

m3

m3

EC 1

Transmission Window

EC 2

S6

m1

m1

m1
m4

m4

Postpone for the next EC Postpone for the next EC

Fig. 4. Window Scheduling for Remote Link Delay Example

In this example, m1 and m2 have a share link between SW1
and SW3 and due to FIFO queue inside the switch it may
possible that m1 is sent earlier in the FIFO even though it has
lower priority (Link SW1-SW3 in Figure 4, EC1). Therefore,
scheduling of m1 can push m3 through m2 makes m3 overrun
of the window, although they do not share links. Thus, the
scheduler postpones m1 for the next EC to prevent any possible
overrun.

In the second EC, m4 is activated and m1 was suspended
from the first EC. However, as m4 has share destination with
m1 and due to have higher priority, m4 is scheduled to be
transmitted in the second EC, hence m1 is again postponed for
the third EC (considering enough size for m4 to fill S4 link). If
all messages have been released simultaneously then m1 would
be transmitted in the second EC as m4 could be scheduled in
the first EC. Therefore, we can conclude that simultaneously
activation of messages does not yield the worst-case response
time (critical instant).

In order to formulate the above outlined effect, in the worst-
case response time analysis, all messages that share links with
those contributed in the Shared Link Delay are taken into
account. Thus, the Remote Link Delay is computed as shown
in (4). Note that, the messages which are already considered
in the Shared Link Delay are excluded.

Wri(t) = ∑
∀k, j∈[1,n],k 6= j 6=i

∧ Rk∩R j 6=0∧ Rk∩Ri=0∧ R j∩Ri 6=0
∧ mk∈hp(m j)
∧ mk∈WT (m j)

d t
Tk
e(Ck) (4)

The sbf(t) is the minimum effective communication capac-
ity that the network supplies in the time interval [0, t]. Note that
in each EC, the utilization bandwidth provided for transmitting
each type of message is BW−I

EC , where BW is the specific width
of the respective transmission window and I is the idle time in
that window, which can be upper bounded by the maximum

message size allocated in BW . Thus, sb f (t) can be computed
in (5).

sb f (t) = (
BW − I

EC
)× t (5)

The response time of mi is computed based on t∗ = min(t >
0) : sb f (t) ≥ rb fi(t). Determining t∗ requires checking the
inequality at all instants in which rb fi(t) changes due to
interference of other messages. Such set of check points
is given by CPrb fi = [∪cpmq ,∀mq∈hp(mi)]∪ Ti, where cpmq =

{Tq,2Tq, ...,nqTq}, nq = b Ti
Tq
c.

The scheduling occurs every EC but in general we do not
know exactly when a scheduled message will be transmitted
within the EC. Therefore, we compute the messages response
times in number of ECs and the response time for mi (RT (mi))
is given by (6).

RT (mi) = d
t∗

EC
e (6)

The analysis for the asynchronous traffic is essentially
similar except for an extra delay caused by the signaling
mechanism. In fact, an asynchronous request may have to
wait approximately 1 EC before its node signals it in the
next SIG message and the master then takes another EC to
insert the respective asynchronous message in the ready queue.
This extra delay can be simply added to the RT (mi) for all
asynchronous messages.

For local traffic, messages may suffer from both Shared Link
Delay and Remote Link Delay which are evaluated using (3)
and (4) respectively. However, local messages are transmitted
through one switch, only, thus sn j = 1. Moreover, rb fi(t) for
local messages is computed as in (2) except that sni = 1.

B. Improved Response Time Analysis
One of the sources of pessimism in the presented response

time analysis is the accumulation of the switching delay
from all messages that contribute in Shared Link Delay term
in (3). According to the scheduling algorithm presented in
Section III-A, during the scheduling process in each EC, the
scheduler considers the maximum switching delay among all
messages that are fit in each link. In contrast, in the analysis all
switching delays are accumulated due to the lack of scheduling
information at each specific time. This makes the analysis very
pessimistic especially when the number of messages is large.
For instance, assume that there are 30 messages that can be
transmitted in 3 ECs. Therefore, 3 switching delays out of 30
are considered in the scheduling. However, in the analysis all
30 switching delays are added, since the number of ECs that
has been passed at time t is not evaluated.

In order to improve the analysis we modify (3) by separating
the switching delay effect from the transmission time of
messages in (7).

Wli(t) = ∑
∀ j∈[1,n], j 6=i
∧ R j∩Ri 6=0
∧ m j∈hp(mi)
∧ m j∈WT (mi)

d t
Tj
e(C j)+ Isi(t) (7)

In (7) the activation of all higher priority messages that
can contribute to this equation can be extracted by knowing
the current time t. We define a multi-set Gi(t) [20] that
contains the upper bound number of switching delays from
each message that contribute in Shared Link Delay at time t.
This upper bound is equal to the maximum number of possible
activation of messages within time interval [0, t]. Depending
on the time t, a number of elements will be taken from Gi(t)
and to consider the worst-case scenario, the selected elements
should be the highest ones. Therefore, we define multi-set
Gsort

i (t) which contains the switching delay values from Gi(t)
sorted in a descending order.

According to the scheduler, one switching delay per each
EC (the largest) is taken into account for scheduling. The
number of EC that has been passed in an interval [0, t] is
given by (8). Therefore, in the response time analysis we select
the first z(t) number of elements from Gsort

i (t) in order to
consider the worst-case scenario for switching delay effect in
our analysis as shown in (9).

z(t) = d t
EC
e (8)

Isi(t) =
z(t)

∑
l=1

Gsort
i (t)[l] (9)

Note that, if z(t) is larger than the number of elements in
the multi-set Gsort

i (t), then the value of the extra elements are
equal to zero.

In addition, the presented improvement in the analysis is
applied for the case of single-master FTT-SE architecture
because the scheduling algorithm used by the master node
is in similar way as multi-master approach.

C. Evaluation of the Analysis

In this section we evaluate the presented analysis method
and compare it with the delay analysis proposed in [4].
Moreover, we asses the level of pessimism embodied in both
analysis methods compared with the simulation measurements
in one particular example.

We considered a network containing 10 switches along
with 30 nodes directly connected to the switches as shown in
Figure 5. The network parameters are EC = 10ms, T M = 12µs,
SIG = 7µs, ∆ = 17µs and the capacity of the Ethernet network
is considered as 100Mbps. Moreover, the transmission win-
dows during each EC is divided as follows. The synchronous
local and global windows are selected to have values equal
to 1.5ms and 2ms respectively, asynchronous local transmis-
sion window is 1.5ms and finally the asynchronous global
transmission window is 4.4ms. In this particular example,
the network composed of 4 clusters which the asynchronous
global transmission window is further splitted equally among
them, i.e. 1.1ms.

We generated 90 messages that include all four types of
traffic such that one specific message per each type is tagged
to have the worst-case scenario among all other messages. In
order to maximize the response time for global synchronous

Message id Message Type T(EC) C(µs)
m1 Global Synchronous 20 100
m2 Global Asynchronous 18 150
m3 Local Synchronous 20 150
m4 Local Asynchronous 19 150

TABLE I
TAGGED MESSAGES PARAMETERS

and asynchronous messages, the priorities of the tagged mes-
sages are selected to be lowest and the route of the messages
to be longest. Moreover, we delay the tagged messages with
several higher priority messages. Furthermore, to generate the
worst-case scenario for local synchronous and asynchronous
tagged messages we set their priorities to the lowest and
blocked them with several higher priority messages in source
and destination links. The tagged messages parameters are
presented in Table I.

SW1 M2

1…3
SW2 M2

4…5

SW3 M3

6…10

SW4

M4

11…13

SW5

M5

14…15

SW6

M6

16…18

SW7

M7

19…20

SW8

M8

21…23

SW9 M9

24…25

SW10 M10

26…30

Fig. 5. A Network Example (1...3 means node 1, 2 and 3)

In order to simulate the outlined example we used a tool
which was presented in [5]. The messages which are generated
to block the tagged messages are considered to have different
activation times in the simulation. We then measured the
maximum end-to-end delays of the tagged messages and
compared with the results obtained from the proposed delay
analysis. This example does not guarantee to produce the
worst-case situation since it is rather complex to determine
with accuracy, however it is assuredly a very unfavorable case.

Figure 6 illustrates the maximum response time of the
tagged messages measured from 10,000 ECs simulation time,
the response time computed using the proposed delay analysis
and the analysis based on Network Calculus [4]. In the figure,
the x-axis represents a message id and the y-axis shows the
message delay in number of ECs.

Comparing the results of simulation, proposed analysis and
Network Calculus analysis, the maximum measured delay
from simulation is always less or equal to the outcomes of
both analysis methods. We observed that the response time
analysis gives tighter results due to the improvement that has
been proposed in this paper compared with Network Calculus
analysis. An extreme level of pessimism provided by Network
Calculus for global synchronous tagged message (m1) is due
to the large number of interfering messages in the route of m1
in which Network Calculus accumulates all their switching
delay in the analysis.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

m1 m2 m3 m4

E
C

 N
u

m
b

e
r

Tagged Messages

Simulation (max)

RT Analysis

NC analysis [4]

Fig. 6. Tagged Messages Response Time

Although the presented analysis based on response time
performs better, it still illustrates a level of pessimism varying
between 50% for local synchronous tagged message (m3) and
100% for the global asynchronous tagged message (m2). The
revealed level of pessimism for local and global asynchronous
tagged messages is due to considering one extra EC in both
analysis methods to capture the scenario in which the request
for the asynchronous message needs to wait for next EC. Also,
we believe that another source of the pessimism is the accuracy
of an actual worst-case scenario in simulation and the effect
of Remote Link Delay that might not be computed by the
simulator.

VI. COMPARATIVE EVALUATION

In this section we compare the two architectures quanti-
tatively with respect to initialization time requirement, data
transmission window and scheduler overhead.

A. Initialization Time

Ideally, the initialization time should be a small fraction of
the EC but it is lower bounded by the time needed to transmit
and process the TM and SIG messages. Here we compare the
initialization time required by both architectures under similar
scenarios.

1) Single-Master Architecture: Beyond their transmission
times, the TM and SIG messages are further delayed due
to interference between different SIGs and to switch delays
(SFD+∆) crossed in their path. Therefore, the data transmis-
sion window should start late enough to guarantee that TM
and SIG messages have arrived before. The initialization time
for this architecture is given by (10) based on the number of
nodes in the network (Nnode) and the turn around time (T RD).

init time = Ndep× (CT M +∆)+max{T RD,
Nnode×CSIG +Ndep× (CSIG +∆)} (10)

CT M and CSIG are the transmission times of TM and
SIG messages, respectively. Ndep represents the depth in the
network topology, e.g., Ndep = 3 in Figure 1. Moreover,
Ndep× (CT M +∆) is the TM reception instant in the farthest
slave nodes. The transmission of SIGs overlaps with the T RD
and thus we consider the maximum between the T RD and
the time to transmit all the SIGs in the network, given by
Nnode×CSIG +Ndep× (CSIG +∆).

2) Multi-Master Architecture: In the multi-master ap-
proach, extra messages are used to control the protocol op-
eration, including the GTM and the asynchTM. Moreover, the
TM is synchronized with the GTM reception while the SIG is
synchronized with the TM reception.

The initialization time for this architecture is given by (11),
where Nmax is the maximum number of nodes in a sub-
network. Furthermore, Ndep× (CGT M +∆) is the longest time
to receive the GTM by all masters. Also, CT M +CasynchT M +∆

required to be added to consider the transmission time of the
TM and asynchTM to the respective master node. Sending the
SIGs for local and global aperiodic messages overlaps with the
T RD ,Thus the maximum between them must be account for.

init time = Ndep× (CGT M +∆)+CT M +CasynchT M +∆

+max{T RD,Nmax× (CSIG +CasynchSIG)}
(11)

To compare the initialization time required in both architec-
tures, we apply (10) and (11) on a network with the following
setting: capacity of 100Mbps, TM and asynchTM messages
assumed 24µs long, SIG messages for both local and global
aperiodic traffic are 10µs long, the GTM transmission time is
8µs, the ∆ is 17µs and the T RD is set to 100µs.

We considered a network with 100 nodes and varied the
depth in the topology (number of levels) while limiting 30
nodes for each sub-network. We observed that the initialization
time for both approaches increases with an increasing depth as
shown in Figure 7. However, in the multi-master architecture
the initialization time is much less than in the single-master
architecture.

Fig. 7. Initialization Time (constant nodes)

As a result, the multi-master approach is more suited to
networks with many nodes, given its shorter initialization
time. In fact, in a single master architecture all SIGs must be
received by the single master connected to the top switch in the
network, and sending the TM to the deepest levels also incurs
in a significant delay, both contributing to increase the ini-
tialization time. Conversely, in the multi-master architecture,
SIGs impact is confined to clusters and the TM transmissions
to the sub-networks, thus occurring in parallel in larger parts
of the network, leading to smaller initialization time.

B. Data Transmission Window

Concerning the data transmission window, the goal would
be to require the shortest window BW that allows meeting
the network requirements of a given application. Thus, we
compute rb fi(t) assuming a given constant EC using Equa-
tion (2), and for all t ∈ CPrb f the BW is derived such that
rb fi(t) = sb f (t). The minimum BW among those computed
for all check points is the window required for that message
to meet its deadline. Then, BW is computed for all messages
and the maximum value is the minimum window that makes
all messages schedulable.

To show the difference in the data transmission window
between the two architectures, we apply the analysis of each
architecture to two different scenarios. In the first one, the
architecture is the same as in Figure 1 with 20 nodes dis-
tributed in the network. In the second scenario, we use the
same topology but with 70 nodes distributed in the network.
In both cases, we generate 100 instances for two different
sets, one with 100 and another with 500 messages, i.e., we
generate 100 sets randomely for two different cases, a set of
100 messages and a set of 500 messages. The average window
computed for the 100 instances of each set is presented for the
two network scenarios in Figure 8. Moreover, to include the
effect of initialization time in the examples, we sum it with
the synchronous and asynchronous windows in Figure 8.

The vertical lines in Figure 8 shows the deviation of mini-
mum and maximum calculated synchronous and asynchronous
windows in all 100 instances. The deviation states that the
average values of different architectures are representative for
the evaluation.

Si
ng

le

M
ul

ti

H
yb

ri
d

Si
ng

le

M
ul

ti

H
yb

ri
d

Si
ng

le

M
ul

ti

H
yb

ri
d

Si
ng

le

M
ul

ti

H
yb

ri
d

20 Nodes 70 Nodes

0

2000

4000

6000

8000

10000

100 messages 500 messages

El
em

en
ta

ry
 C

yc
le

 (u
s)

100 messages 500 messages

Initialization
Time
Asynchronous
Window
Synchronous
Window

Fig. 8. Data Transmission Window Requirement

The results show that, for less amount of messages in
both 20-nodes and 70-nodes examples, the single-master case
needs shorter windows for synchronous and asynchronous
traffic compared with the multi-master approach. The reason is
that each window in multi-master architecture is divided into
different types, i.e., global and local which cause significant
increase of idle times assumed in each sub-windows.

However, initialization time for the single-master archi-
tecture increases when the number of nodes increases, in
agreement with Figure 7. Therefore, the time needed within

EC to transmit the traffic is increased in case of 70-nodes
example, even though the data transmission window is less
than the multi-master approach.

Nevertheless, by increasing the number of messages to 500,
in both 20-nodes and 70-nodes examples, the synchronous
window in multi-master architecture is much less than single-
master approach. The reason is that in the single-master the
switching delays of local traffic are accumulated to global
traffic which cause to allocate larger window. However, the
asynchronous window in multi-master is larger due to have
more idle time, i.e. more partitioned windows for clusters.
Finally, considering initialization time the multi-master ap-
proach requires less EC to transmit the traffic, in particular
for a network with more number of nodes.

In addition, increasing the number of nodes in the example
decreases the window requirement since the messages are
distributed among more nodes decreasing the interference in
each link.

C. Scheduler Overhead

The master nodes in both architectures schedule the ready
messages in parallel with the transmission of data messages.
The time needed to schedule the messages depends on the
processing capacity of the master node and on properties of
the message set. However, the scheduling process should be
finished before the start of the next EC to avoid missing cycles.
The time which is allocated for the master node to schedule
the ready messages is (EC− InitializationTime). Therefore,
according to Figure 7 and considering a constant EC, the
time available for the master node to schedule the messages is
decreased when increasing the number of levels in the network
topology. This scheduling time is tighter for the single-master
architecture. Moreover, in the single-master approach, one
master node is responsible for scheduling all the traffic in
the network, while in the multi-master architecture this duty
is divided among several master nodes for local messages.
Therefore, this situation is more demanding in the single-
master approach with less available time for scheduling.

VII. HYBRID APPROACH

The previous section showed that neither architecture domi-
nates the other one. Single-master architecture performs better
for small networks, while multi-master architecture is more fit
for bigger networks having high amount of nodes and mes-
sages. Thus, combining the two approaches has the potential
to give better results. This can be done by connecting sets
of single-master networks in clusters. An example of such an
architecture is depicted in Figure 1, excluding M2, M4 and
M5. In this approach, the traffic in each cluster is coordinated
by a master node that is connected to the parent switch of the
cluster (e.g. M1 for CL1 and M3 for CL2 in Figure 1).

Based on this new architecture, we classified the traffic
in two categories according to the source and destination
nodes of each message. If the source and destination of the
message belong to the same cluster, it is called internal,
otherwise the message is called external. The window for data

transmission is divided into internal and external sub-windows
within synchronous and asynchronous windows as illustrated
in Figure 9. Each master node schedules the internal messages
considering the internal sub-window, while all master nodes
schedule all external traffic in the network within the exter-
nal sub-window in parallel. Thus, each master node ensures
that enough external sub-window is available for its external
messages.

Time
Masters

TM

Synchronous Window

External Internal Internal

Asynchronous Window

Switch
In

switch
Out

G
T
M

CL1 CL2

External

Fig. 9. EC Structure of Hybrid Architecture

Again, the synchronization of the ECs can be achieved by
different solutions but we follow the same GTM mechanism
as we did in the multi-master architecture.

A. Worst-Case Delay Analysis

A message in the network may suffer from delays and inter-
ference during the transmission. The interference is similar to
the previous approaches except that the bandwidth allocation
between the traffic types is different.

The Shared Link Delay for message mi occurs when any
other higher priority message shares any links from the source
to the destination node in the route of mi. This delay is derived
using (3) considering that the messages should have the same
window allocation as mi in the transmission time (WT (mi)).

The Remote Link Delay is applicable as well, in which all
the messages that have share link with the messages account
for Shared Link Delay should be taken into account. The
Remote Link Delay is computed in (4) considering the window
allocation for the messages (WT).

Finally, the rb fi(t) and sb f (t) are calculated in (2) and (5)
in order to derive the response time (RT (mi)).

B. Evaluation

In order to evaluate the proposed architecture, we use the
same experiment as for the previous architectures.

We determine the initialization time according to the sig-
naling in the hybrid architecture using (12). In the proposed
architecture, one TM is used for both synchronous and asyn-
chronous messages compared with the multi-master approach
which uses both the TM and asynchTM. Also, one SIG is used
to inform the master node about aperiodic messages, instead of
using two signals in the multi-master approach. However, all
TM and SIG messages are transmitted through two switches
which increases the delay due to the store-and-forward feature
of the switches.

init time = Ndep× (CGT M +∆)+3×CT M
+max{T RD,NCL×CSIG}

(12)

NCL is the maximum number of nodes in one cluster and
Ndep × (CGT M + ∆) is the latest time that GTM is received
by the farthest slave node in the network topology. Moreover,

3×CT M is the TM reception time considering crossing two
switches, i.e. from parent master of cluster to the slave node.
Also, SIGs are transmitted in parallel with the T RD, hence
the maximum of them should be considered.

Using the same example with the same transmission times
which was used in Section VI, we computed the initialization
time for this architecture. The result compared with the other
architectures is depicted in Figure 7. The results show that
increasing the number of levels in the network topology and
assuming 100 slave nodes, the initialization time for the hybrid
architecture is less than for the multi-master approach.

Furthermore, we computed the minimum window required
for each type of traffic such that the traffic is schedulable.
The results are also included in Figure 8 and show that the
window needed for transmitting the data is much less than
in the multi-master and single-master approaches specially in
a network with high amount of nodes and messages. Also,
including the initialization time as in Figure 8, the time needed
for data transmission plus the initialization time in the hybrid
approach for large networks is much less than for the other
two architectures.

In addition, in the hybrid architecture, the number of masters
used to coordinate the traffic is noticeably lower than in the
multi-master approach while still having the benefits of that
architecture. For instance, the system in Figure 1 requires two
master nodes in the hybrid approach and five in the multi-
master approach which makes the former more cost effective
as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an improved response time anal-
ysis for the multi-master architecture of master-slave multi-hop
switched Ethernet networks, particularly applied to the FTT-
SE protocol. We also compared the results obtained using three
different approaches, the proposed analysis, Network Calculus
analysis and simulation, on a worst-case scenario experiment.
We concluded that the proposed response time analysis gives
tighter upper bounds rather than Network Calculus.

In addition, we evaluate the performance of the architectures
with respect to data transmission window requirement, initial-
ization time and scheduler overhead. In general, the results
show that a multi-master architecture has better bandwidth
utilization for large networks compared with a single-master
approach. Moreover, we presented a new hybrid architecture
that provides the benefits of the previous two approaches.
Finally we presented an evaluation of the proposed hybrid
architecture in which the overall performance is shown im-
proved compared with previous solutions. On-going work aims
at studying solutions for time synchronization between the
master nodes in the network to find the optimum way with
less effect on the performance.

IX. ACKNOWLEDGMENTS

This work is supported by the Swedish Foundation for
Strategic Research, via Mälardalen Real-time Research Cen-
ter (M-RTC) at Mälardalen University. Also, it is partially

supported by FEDER through the COMPETE program, and
by the Portuguese Government through FCT grant Serv-CPS
PTDC/EEA-AUT/122362/2010”.

REFERENCES

[1] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over cots ethernet switches,” in 6th IEEE International Workshop
on Factory Communication Systems (WFCS’06), June 2006.

[2] R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal,
“Controlling multi-switch networks for prompt reconfiguration,” in Proc.
of 9th Int. Workshop on Factory Communication Systems (WFCS12),
May 2012.

[3] M. Ashjaei, M. Behnam, T. Nolte, L. Almeida, and R. Marau, “A
compact approach to clustered master-slave ethernet networks,” 9th
IEEE Int. Workshop on Factory Communication Systems (WFCS’12),
May 2012.

[4] M. Ashjaei, M. Liu, M. Behnam, A. Mifdaoui, L. Almeida, and
T. Nolte, “Worst-case delay analysis of master-slave switched ethernet
networks,” in 2nd International Workshop on Worst-Case Traversal Time
(WCTT’12). ACM, December 2012.

[5] M. Ashjaei, M. Behnam, and T. Nolte, “The design and implementation
of a simulator for switched ethernet networks,” in 3rd International
Workshop on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS’12), July 2012.

[6] S. Varadarajan and T. Chiueh, “Ethereal: a host-transparent real-time
fast ethernet switch,” in 6th Int. Conference on Network Protocols, oct
1998.

[7] H. Hoang and M. Jonsson, “Switched real-time ethernet in industrial
applications - deadline partitioning,” in 9th Asia-Pacific Conference on
Communications (APCC’03), vol. 1, sept. 2003.

[8] R. Santos, P. Pedreiras, F. Yekeh, T. Nolte, and L. Almeida, “On
hierarchical server-based communication with switched ethernet,” in
15th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’10), sept. 2010.

[9] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance analysis of
a master/slave switched ethernet for military embedded applications,”
IEEE Transactions on Industrial Informatics, vol. 6, no. 4, nov. 2010.

[10] M. Zhang, J. Shi, T. Zhang, and Y. Hu, “Hard real-time communication
over multi-hop switched ethernet,” in The 2008 IEEE Int. Conference
on Networking, Architecture, and Storage (NAS’08), june 2008.

[11] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for
bounding end-to-end delays on an afdx network,” in 18th Euromicro
Conference on Real-Time Systems, 0-0 2006.

[12] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-
case delay analysis of an afdx network using an optimized trajectory
approach,” IEEE Trans. on Industrial Informatics, nov. 2010.

[13] R. Queck, “Analysis of ethernet avb for automotive networks using
network calculus,” in IEEE International Conference on Vehicular
Electronics and Safety (ICVES’12), July 2012.

[14] M. Manderscheid and F. Langer, “Network calculus for the validation of
automotive ethernet in-vehicle network configurations,” in International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC’11), October 2011.

[15] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “Tight end-to-end
per-flow delay bounds in fifo multiplexing sink-tree networks,” Elsevier
Performance Evaluation, vol. 63, October 2006.

[16] J. Schmitt, F. Zdarsky, and M. Fidler, “Delay bounds under arbitrary
multiplexing: When network calculus leaves you in the lurch...” in The
27th IEEE Conference on Computer Communications, April 2008.

[17] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, “A novel approach
to scalable cac for real-time traffic in sink-tree networks with aggre-
gate scheduling,” in the 1st international conference on Performance
evaluation methodolgies and tools. ACM, October 2006.

[18] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous traffic signaling
over master-slave switched ethernet protocols,” in 6th International
Workshop on Real Time Networks (RTN’07), July 2007.

[19] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE International Real-Time Systems Symposium
(RTSS’03), 2003.

[20] M. Behnam, T. Nolte, and R. J. Bril, “Bounding the number of
self-blocking occurrences of sirap,” in 31th IEEE Real-Time Systems
Symposium (RTSS’10), December 2010.

