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Abstract—The discipline of linear control in centralized sys-
tems has been extensively studied and optimal results can
already be found in the literature. However, in recent years, new
variants of control systems have appeared, among them control
communication networks with various degrees of reliability. Two
approaches have been defined to cope with missing control
values in such non-ideal networks: output zero and hold. The
optimal control law over output zero lossy networks has already
been presented in the literature. In this paper, we present the
optimal control law of generalized output schemes. The control
law derived from such generalized output scheme has more
internal structure, being equal to optimal controller of each one
of its sub-cases, including the zero and the hold approaches.
Furthermore, it is presented the optimal output strategy to
which the optimal control under it produces the smallest cost.
Two proofs are provided for the proposed control law, one
based on the collection/gathering terms and another based on a
recursive differential expansion. The novel control law is tested
via simulation and the obtained results are in perfect agreement
with the presented theory.

I. INTRODUCTION

Control theory is nowadays a well developed theory, with
mathematically sound and experimentally proven foundations.
Optimal control of linear centralized systems, i.e., systems
where all of its components are located in the same physical
device, was naturally the first to be discovered.

Improvements in networking technologies and computa-
tional platforms made Networked Control Systems (NCS) a
reality. Despite bringing important benefits (deployment cost,
deployment time, maintenance cost, to name just a few) the
adoption of NCS also introduced several non-ideal aspects
that were not taken into account in the initial formulation of
optimal control. Such non-ideal aspects include jitter (variance
in the control message arrival time), latency (average delay in
the communication) and packet losses.

These effects have been subject of intense research and
appropriate solutions for some of them are nowadays reported
in the literature. For example, latency can be dealt with using
predictive controllers that choose the best inputs based on the
moment in which the control value will actually be outputted.
For the case of lossy networks, there are two possible output
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strategies: zero and hold. In the zero approach, whenever a
control value is not delivered, it is outputted a zero. In an
equivalent scenario, the hold approach outputs the value that
was outputted in the previous control cycle.

The optimal control law in output zero networks is now
a standard part of control theory. The actual result maintains
the overall structure of the optimal controller in centralized
systems. However, the hold strategy leads to an optimal
controller that has a structure that is significantly different
from the optimal control law in centralized networks, though
in the limit of no network error it converges to the optimal
centralized control. It is the opinion of the authors that this
fact influenced the timing of the discoveries.

In this paper it is presented a novel control law that is
optimal in lossy control networks, in which the actuator
applies a generalized linear function of the last outputted value
whenever there is a control message drop, as well as it is
presented the optimal matrix of such linear function.

The remaining of this article is organized as follows: in
Section II it is made a review of the contributions in the
literature that are relevant to this work. In Section III it is
presented the notation used throughout the paper. In Section
IV it is presented a solution for a similar problem which in
turn will be compared to the solution presented in this paper
and later on is used for a comparison of the structure of the
respective problems. Section V is the main section of this
paper presenting two different, though equivalent, methods to
solve the identified problem. The first one is an extension of
classical approaches which keeps track of all the matrices that
emerge due to the hold strategy. The second one uses the
Hessian matrix to reduce the quadratic cost function into a
more tractable form. Section VI discusses aspects related to
presented solutions as well as of the other types of control.
In Section VIII it is made an evaluation, via simulation, of
the control laws devised in this paper. Finally, Section IX
summarizes the paper and presents some concluding remarks.

II. RELATED WORK

Optimal control is a relatively well-established discipline,
arguably around 90 years old, which started with the work of
Pontryagin and Richard Bellman, with Bellman’s contribution
being

Vk(x) = x′
kQxk +min

uk

(
u′
kRuk + x′

k+1Pk+1xk+1

)
(1)



where Vk = x′
kPkxk is the value function to be minimized,

x is the state, u is the control signal, and Q and R are
the weight/cost matrices. This equation assumes full state
knowledge, i.e. all state are measurable with no sensor noise,
and no state perturbations whatsoever. Hence, from a control
practice standpoint, its usefulness is limited. This changed with
the advent of Kalman filters, leading to the much heralded
Linear Quadratic Gaussian Regulators. Estimation and control
decoupling was explained by the application of the certainty
equivalence principle, which states that if uk = −Lkxk, i.e.
Lk is the optimal controller gain if the state is perfectly known,
then if only a state estimation (x̂k|k) is available the optimal
control value is uk = −Lkx̂k|k [1]. In [2] it was shown that
the certainty equivalence principle holds if and only if the
estimation error covariance matrix is not a function of the
state i.e.

∂E
[(
x̂k|k − xk

)′ (
x̂k|k − xk

)]
∂xk

= 0n×n×n (2)

Recent contributions in this line of work show that the
certainty equivalence principle is still widely accepted (e.g.
[3]–[11]), though some works put its applicability in question
for certain classes of systems. E.g. [12] and [13] show that in
systems in which the parameters are unknown or because the
system is non-linear, the use of the certainty equivalence leads
to a suboptimal control, hence it is proposed an heuristic called
partial certainty equivalence. Similar remarks were made in
[14] regarding self-tuned controllers.

Obviously, the subject of estimation and control over lossy
networks is not as old as the subject of optimal control. The
first appearances of optimal control in lossy networks in the
literature tried to find a correspondence between the Shannon
information theory [15] and control theory. More specifically,
tried to answer the age old question: what is smallest bit-
rate necessary to stabilize a given system or, equivalently,
what is the maximum transmission error rate that a network
can deliver without compromising the stability of its systems?
However, Which techniques achieve this threshold? is a matter
that, to the best of the authors knowledge, is still unexplored.
A number of early attempts to answer the first question are
presented in [16] [17].

In [18] the authors attempt to extend the classical theory
of optimal control [19] [20]. However, they conclude that the
separation principle — which allows a simplification of the
results — does not hold in the general case. However, other
simpler results are shown, such as, that a system is stable if the
independent and identically distributed (i.i.d.) variables that
describe the error rate (α) verify α = maxλ(A−2), assuming
that the system is unstable, where λ(A) is the set of all
eigenvalues of matrix A and A is the state-transition matrix.
Similar claims are made in [21].

[22] makes a more in depth study of such issues, presenting
formally the UDP and TCP-like protocol cases. The TCP-
like protocol is more amenable to the existing optimal control
theory, whereas UDP-like protocol, under the assumptions

made therein — uk = 0, if δk = 02— leads to a non simple
optimization problem, since the estimation error covariance
matrix at any given time step will depend on previous control
values. It is shown in the same reference that, under their
assumptions, TCP-like protocols have a error-rate similar to
the one found in the previous papers, but UDP-like protocols
have lower error-rate bounds that guarantee stability.

Another somewhat related development is given in [23],
in which state information is sent in more that one packet.
This fragmentation is done primarily in an attempt to reduce
the impact of packet losses, since loosing a packet with a
significant large number of state variables would be worst than
loosing one packet with only one variable.

[24] takes a radically different approach. It uses passive
networks as a mean to provide jitter immunity to the controlled
system. However, no reasons to believe that passive networks
are more immune to jitter is presented, and no mechanism to
design passive controllers to achieve certain metrics, e.g. state-
tracking or input tracking under noisy conditions, are provided.

In [25] it is presented an analysis similar to the analysis
presented in this paper, in which an optimal controller was
introduced. However, the authors placed a strong emphasis on
the maximum drop rate that allowed for the stabilization of the
system. The actual controller for the hold case was not fully
presented, rather it was presented a reference to another article
that provided the main intuition for the correctness of the
proposed controller. Note, however, that the results presented
herein do not contradict the results in [25]. In fact, the results
presented herein extend them.

In [26] the output schemes are extended from the zero
versus hold spectrum by allowing the value that is held at
the actuator to decay with time, that is,

xk+1 = Axk +Bsk + wk (3a)
sk = Lkrk (3b)
rk = θkuk + (1− θk)Mkrk−1 (3c)

in which sk is the value that is actually outputted, rk is the
actuator internal state representation which is allowed to be
a matrix, uk is the control value computed at the controller
using information from the sensors and it is transmitted in
a bulk message, Mk is a state transition for the actuator
state and Lk is the respective controller gain (in fact, the
authors of [26] assume that sk is equal to the first column
of rk, hence, constraining Mk). The authors of the paper in
question proceeded by proposing a suboptimal controller given
their control architecture. Nevertheless, no motivation for this
particular control architecture was presented. In a fact, a case
can be made that their approach both sends a large number
of messages and has a complex actuator. Second, the actuator
internal state is matrix, i.e. rank 2 tensor, whereas it is well
known from realization theory that the total number of entries
of such state can be chosen such that it is not larger that the
size of the state per se.

2δk = 1 if the message is delivered and δk = 0 otherwise



III. PROBLEM DEFINITION AND NOTATION

In this paper there are considered discrete-time Linear Time-
Invariant (LTI) systems, which will be described using a state
space representation, i.e.

xk+1 = Axk +Bzk (4a)
yk = Cxk (4b)

with xk, zk and yk representing the system state, input (as
outputted by the actuator) and output, as sensed by the sensors,
vectors respectively, and A,B and C the state transition, the
input and the output matrices respectively. It will also be used
a variable uk to denote the control value computed by the
controller. It is assumed that the variables xk, zk, uk and yk
are column vectors of sizes (n×1), (r×1), (r×1) and (p×1)
respectively. A,B,C are matrices of appropriate dimensions.
Two standard matrices are used frequently, namely the 0n×m

which is a matrix of zeros with n lines and m columns, and the
matrix In (identity matrix) which is a square matrix composed
of 1 in the diagonal entries and 0 in all other entries.

The goal of the controller is to minimize, without loss of
generality3, a quadratic cost function, namely

J =

N∑
k=0

x′
kQkxk + z′kRkzk (5)

with Qk and Rk semi-positive definite matrices.
This cost function is computed in a step by step manner

— cost-to-go — which is essentially the cost of the current
step plus the (minimum) cost-to-go of all future steps, i.e.
Vk(xk) = x′

kQkxk + z′kRkzk + Vk+1(xk+1).
Furthermore, it is assumed that the applied control value

(zk) depends on the delivery of a certain control massage as

zk = θkuk + (1− θk)Mzk−1 (6)

in which θk is a boolean variable that is ‘1’ if the message
is delivered and ‘0’ otherwise and uk is the control vector as
produced by the controller. Mk is a square matrix, of suitable
size. Whenever the actuator receives a new control value (uk),
i.e. θk =‘1’, it outputs the received value, otherwise, i.e.
θk =‘0’, it outputs a vector equal to the matrix Mk times
the previous outputted value. Note that if Mk = 0 then
output strategy will be equal to the output zero strategy and
if Mk = Ir, then it will be equal to the hold strategy.

The main reason why the system is solved in discrete-
time is that as the sampling time goes to zero, the control
value become a Lebesgue function composed by a series of
discontinuities between two given points. This problem does
not appear in physical systems because as the sampling time
goes to zero the respective θk become correlated. However, in

3it could have been minimized the more complete quadratic cost function

J =
N∑

k=0

[
xk

zk

]′ [
Qk Nk

N ′
k Rk

] [
xk

zk

]
but as will be shown, the result of both minimizations have essentially the
same structure.

this article it is assumed that θk are independent and identically
distributed (i.i.d.) variables. The issue of correlated θk will be
addressed in future communications.

On a related note, though from a control perspective,
network protocols can be organized in two groups, namely,
TCP-like and UDP-like protocols, as discussed in previous
sections. The main results of this paper only consider TCP-like
protocols. This choice was imposed by the fact that UDP-like
protocols do not respect the separation principle, see [2].

IV. OPTIMAL CONTROL OVER OUTPUT
ZERO LOSSY NETWORKS

Even though the solution of this particular problem can be
found in the literature (see [22]), it will be presented a different
derivation here to allow for a comparison with the generalized
optimal controller, presented in this paper.

Theorem 1. The value of the cost-to-go in a output zero lossy
network with no estimation (and input) error is

Vk(xk) = x′
kPkxk (7a)

Pk = Qk + (A− θ̄BLk)
′Pk+1A (7b)

L∗
k = (B′Pk+1B +Rk)

−1B′Pk+1A (7c)

and PN = QN .

Proof: This theorem is proven by induction. Obviously it
is valid for k = N , in which case the definition of the cost
function and of Vk coincide. Considering previous steps leads
to

Vk(xk) = x′
kQkxk + θku

′
kRuk+

(Axk + θkBuk)
′
Pk+1 (Axk + θkBuk)

(8)

calculating the derivative of Vk(xk) in order to uk and equating
to zero yields

∂Vk(xk)

2∂uk
=θku

′
kR+θk (Axk+θkBuk)

′
Pk+1B =01×r (9)

which implies that

Vk(xk)−
∂Vk(xk)

2∂uk

∣∣∣
uk=u∗

k

u∗
k = x′

kQkxk

+ (Axk + θkBu∗
k)

′
Pk+1Axk. (10)

The statement regarding the value of L∗
k (Equation (7c)) is

proven by solving Equation (9) in order to uk following by a
comparison with the definition of L∗

k. However, it should be
noticed that the value of uk is relevant only if θk = 1, since
otherwise it will not be applied. The statement regarding Pk

(Equation (7b)) is proven by comparing Equation (10) (after
taking expectation over θk) with the definition of Vk(xk).

V. OPTIMAL CONTROL OVER HOLD LOSSY NETWORKS

In this section there will be presented two different proofs of
the theorem regarding optimal control over output hold lossy
networks. They both produce the same optimal control law.



A. Recursive Matrix Derivation

Theorem 2. The cost-to-go function of control in a lossy
network is given by Vk(xk, zk−1) = θkx

′
kPkxk + (1 −

θ)(z′k−1Rkzk−1 + Vk+1(xk+1, zk−1)) with

Pk = Qk +
(
A′Ik+1 − (BL∗

k)
′
Hk+1

)
A (11a)

Ik = θkPk + (1− θk) (Qk +A′Ik+1A) (11b)
Hk = (1− θk)M

′ (B′Ik+1A+Hk+1A) (11c)
Fk =(1−θk)M

′ (B′Ik+1B+

Hk+1B+B′Hk+1+Fk+1)M
(11d)

R̂k = Rk + (1− θk)M
′R̂k+1M (11e)

L∗
k =

(
B′Fk+1B + R̂k

)−1

B′Hk+1A (11f)

and PN = QN , IN = QN ,HN = 0r×n, FN = R̂N = 0r×r.

Proof: For this output strategy it must be taken into
account the fact that the cost-to-go function includes a term
that does not depend on uk, which is applied whenever θk = 0.
Hence, the cost-to-go function can be written as

Vk(xk; θk, zk−1) = x′
kQkxk+

θk

(
u′
kRkuk + θk+1x

′
k+1Pk+1xk+1+

(1− θk+1)Vk+1(xk+1; θk+1, uk)
)
+

(1− θk)
(
z′kRkzk + Vk+1(xk+1; θk+1, zk)

)
. (12)

Obviously, the term with 1 − θk cannot be minimized by
uk. However, Equation (16) applies to Vi, k < i ≤ N and in
that case it is useful to consider cases that were not minimized
upon the computation of the respective ui, i.e. expansions of
the term (1−θk)(z

′
kRkzk+Vk+1(xk+1; θk+1, zk)). Recall also,

that these equations are solved backwards in time, starting at
k = N and finishing at k = 0.

The proof per se, is done by induction: according to the
theorem VN (xN ) = x′

NQNxN which agrees with the cost-to-
go in the last step. Given that the previous, which in this case
(due to it being backwards in time) is actually the next, step
held and under the condition of the theorem plus the structure
of Vk as shown in Equation (12), then

Vk(xk; θk, zk−1) = x′
kQkxk+

θk

(
u′
kRkuk + θk+1(Axk +Buk)

′Pk+1(Axk +Buk)+

(1− θk+1)(Vk+1(Axk +Buk; θk+1, uk))
)
+

(1− θk)
(
z′kRkzk + Vk+1(Axk +Bzk; θk+1, zk)

)
(13)

which with the recursive expansion of all the terms enclosed
within Vi, ∀ik < i ≤ N , yields

Vk(xk; θk, zk−1) = x′
kQkxk+

θk

N−1∑
i=k

 i∏
j=k+1

(1− θj)

(
u′
k

(
M i−k

)′
RiM

i−kuk+

θi+1x
′
i+1Pi+1xi+1 + (1− θi+1)x

′
i+1Qi+1xi+1

)
+

(1−θk)
(
z′k−1M

′RkMzk−1+Vk+1(xk+1; θk+1,Mzk−1)
)

(14)

At this point we would like to stress, once more, that the
terms in θj (as opposed to terms in 1−θj) were not expanded
because they are encapsulated into Pi+1. By further expanding
xi+1 (for the case in which θk = 1 and θ[k+1,i] = 0) into

xi+1 = Ai−kxk +

i∑
j=k

Ai−jBM j−kuk (15)

leads equation (14) into (16) (shown at the bottom). Equation
(16) itself can be rewritten into

Vk(xk; θk, zk−1) = x′
kQkxk+

θk

(
u′
kR̂kuk + (Axk)

′Ik+1Axk + (Buk)
′Hk+1Axk+

(Axk)
′H ′

k+1Buk + (Buk)
′Fk+1Buk

)
+ (1− θk)

(
z′kRkzk + Vk+1(xk+1; θk+1, zk−1)

)
(17)

with

R̂k =
N−1∑
i=k

 i∏
j=k+1

(1− θj)

 (M i−k)′RiM
i−k (18a)

Ik =

N−1∑
i=k

 i∏
j=k+1

(1− θj)

 (Ai−k)′

(
θi+1Pi+1 + (1− θi+1)Qi+1

)
Ai−k

(18b)

Hk =

N∑
i=k

 i∏
j=k+1

(1− θj)

 i∑
j=k

Ai−jBM j−k

′

(
θi+1Pi+1 + (1− θi+1)Qi+1

)
Ai−k

(18c)

Fk =
N−1∑
i=k

 i∏
j=k+1

(1− θj)

 i∑
j=k

Ai−jBM j−k

′

(
θi+1Pi+1 + (1− θi+1)Qi+1

) i∑
j=k

Ai−jBM j−k

.

(18d)

Vk(xk; θk, zk−1) = x′
kQkxk + (1− θk)(z

′
k−1M

′RkMzk−1 + Vk+1(xk+1; θk+1,Mzk−1))+

θk

N−1∑
i=k

 i∏
j=k+1

(1− θj)

u′
k(M

i−k)′RiM
i−kuk+

Ai−kxk+
i∑

j=k

Ai−jBMj−kuk

′

(θi+1Pi+1+(1− θi+1)Qi+1)

Ai−kxk+
i∑

j=k

Ai−jBMj−kuk


(16)



All these variables have been defined in a more economic
manner beforehand. Taking the derivative of Vk (equation (17))
in order to uk and equation to zero yields

∂Jk(xk; θk, zk−1)

2∂uk
=

θk

(
u′
kR̂k + (Axk)

′H ′
kB + (Buk)

′FkB
)
= 01×r.

(19)

Subtracting an appropriate form of equation (19) from (17)
yields

Vk(xk; θk, zk−1)−
∂Jk(xk; θk, zk−1)

2∂uk
uk =

x′
kQkxk + θk

(
(Axk)

′Ik+1 + (Buk)
′Hk+1

)
Axk

+(1− θk)
(
z′kM

′RkMzk + Vk+1(xk+1; θk+1,Mzk−1)
)
(20)

from which, substituting u∗
k = −L∗

kxk, taking expectations
over θk makes the term of Vk that appears multiplied by θk
independent of uk. Furthermore, such term is multiplied by xk

and x′
k and it coincides with the definition of Pk. By expanding

the terms multiplied by 1 − θk and remembering that, under
such circumstances zk = Mzk−1, concludes the proof with
respect to Vk.

Regarding the optimal controller gain, starting from equa-
tion (19), transposing and grouping terms with uk and xk,
yields

θk

(
B′FkB + R̂k

)
u∗
k + θkB

′HkAxk = 0n×1 (21)

in which it is assumed that θk = 1, since otherwise the cost
function does not depend on uk. Sending the second term to
the right-side and considering the definition of L∗

k concludes
the proof.

B. Differential Matrix Derivation

Theorem 3. The cost-to-go function of control in a lossy
network is given by

Vk(xk)=
1

2

[
xk

zk−1

]′[
P−
xx,k P−

xu,k

P−
ux,k P−

uu,k

][
xk

zk−1

]
(22a)[

P+
xx,k P+

xu,k

P+
ux,k P+

uu,k

]
=Â′

[
P−
xx,k+1 P−

xu,k+1

P−
ux,k+1 P−

uu,k+1

]
Â+

[
Qk 0n×r

0r×n Rk

]
(22b)

Â =

[
A B

0r×n In

]
(22c)[

P−
xx,k P−

xu,k

P−
ux,k P−

uu,k

]
=

[
P+
xx,k−θkP

+
xu,kL

∗
k (1−θk)P

+
xu,kM

(1−θk)M
′P+

ux,k (1−θk)M
′P+

uu,kM

]
(22d)

L∗
k =

(
P+
uu,k

)−1

P+
ux,k (22e)

and [
P−
xx,N P−

xu,N

P−
ux,N P−

uu,N

]
=

[
QN 0n×r

0r×n 0r×r

]
. (23)

Proof: Since the cost function is quadratic it is possible
to rewrite it in the form

Vk(xk, zk−1)=
1

2

[
xk

zk−1

]′
d2Jk

d

[
xk

zk−1

]
d

[
xk

zk−1

]′ [ xk

zk−1

]
. (24)

The derivation is carried out in order to Jk instead of Vk(xk)
because

Vk(xk, zk−1)
def
= min

uk

Jk(xk, uk, zk−1).

Hence, Vk is not a function of uk, being assumed that uk is
equal to a given value u∗

k. Continuing, deriving Equation (12)
(twice) in order to [x′

k u′
k]

′ using the chain rule leads to

∂Jk(xk)

∂xk
=2x′

kQk +
∂Jk+1(xk+1)

∂xk+1

∂xk+1

∂xk
(25a)

∂Jk(xk)

∂zk
=2θkz

′
kRk +

∂Jk+1(xk+1)

∂xk+1

∂xk+1

∂zk
+

∂Jk+1(xk+1)

∂zk

∂zk
∂zk

(25b)

taking the derivative of these two equations in order to xk and
zk lead to (the derivative in order to ∂x′

k∂zk was omitted due
to the symmetry of the equations)

∂2Jk(xk)

∂x′
k∂xk

=2Qk +

(
∂xk+1

∂xk

)′
∂2Jk+1(xk+1)

∂x′
k+1∂xk+1

∂xk+1

∂xk
(26a)

∂2Jk(xk)

∂z′k∂xk
=

(
∂xk+1

∂zk

)′
∂2Jk+1(xk+1)

∂x′
k+1∂xk+1

∂xk+1

∂xk
+(

∂zk
∂zk

)′
∂Jk+1(xk+1)

∂z′k∂xk+1

∂xk+1

∂xk

(26b)

∂2Jk(xk)

∂z′k∂zk
=2Rk+(

∂xk+1

∂zk

)′
∂2Jk+1(xk+1)

∂x′
k+1∂xk+1

∂xk+1

∂zk
+(

∂zk
∂zk

)′
∂2Jk+1(xk+1)

∂z′k∂xk+1

∂xk+1

∂zk
+(

∂xk+1

∂zk

)′
∂2Jk+1(xk+1)

∂x′
k+1∂zk

∂zk
∂zk

+(
∂zk
∂zk

)′
∂2Jk+1(xk+1)

∂z′k∂zk

∂zk
∂zk

(26c)

The last set of equations is recursive which can be made
more evidently if the substitutions

Â ≡
∂

[
xk+1

zk

]
∂

[
xk

zk

] =

[
A B

0r×n Ir

]
(27)

the vector being derived (in the numerator) as a term in zk as
opposed to zk+1 because (as it will be discussed below) the
act of producing a control value transforms the expression in



zk+1 into an expression in zk. Define also

P̂−
k

def
=

[
P−
xx,k P−

xu,k

P−
ux,k P−

uu,k

]
=

1

2

 ∂2Jk

∂x′
k∂xk

∂2Jk

∂x′
k∂zk

∂2Jk+1

∂z′
k∂xk

∂2Jk

∂z′
k∂zk

 (28)

(with P±
xu,k = (P±

ux,k)
′). Putting it all together

P̂+
k =

[
Qk 0n×r

0r×n Rk

]
+ Â′P̂−

k+1Â. (29)

Due to the quadratic nature of the cost function (before
minimization Jk(xk, zk) is a function of P̂+

k )

Jk(xk) =
1

2

[
xk

zk

]′
P̂+
k

[
xk

zk

]
(30)

which taking the derivative in order to uk leads to

∂Jk(xk)

∂uk
=

[
xk

zk

]′
P̂+
k

[
0n×r

θkIr

]
= 01×r (31)

which is solved into (i.e. its minimum)

uk = −
(
P+
uu,k

)−1

P+
ux,kxk (32)

which defines the controller gain Lk. Remembering that zk =
θkuk + (1 − θk)Mzk−1 and as just shown u∗

k = Lkxk, this
can be substituted into (30) from which performing the matrix
multiplication taking into account that θk(1 − θk) = 0 and
Equation (32) and grouping terms in xk yields

Vk(xk) =
1

2

[
xk

zk−1

]′
P̂−
k

[
xk

zk−1

]
(33)

with (due to the idempotency of the product in Boolean algebra
(1− θk)(1− θk) = (1− θk))

P̂−
k =

[
P−
xx,k−θkP

−
xu,k

(
P−
uu,k

)−1

P−
ux,k (1−θk)P

−
xu,kM

(1−θk)M
′P−

ux,k (1−θk)M
′P−

uu,kM

]
(34)

As referred above, the computation of u∗
k due to the fact that

it is a function of xk transformed Equation (30) with terms in
zk into Equation (33) with terms in zk−1.

VI. DISCUSSION

Two important notes are in order: first, previous sections
presented two proofs of the optimal controller over hold lossy
networks. The control laws that came out of these two sections
appear to be different. However, the various sub-matrices of
the Hessian matrix that appear in the second proof are related
according to

P̂−
k = 2

[
Ik Hk

H ′
k Fk + R̂k

]
. (35)

The factor of two in the last equation stems from the slightly
different cost functions used in each proof. The last equality
can be established by simply comparing the values of the
respective variables.

Second, in general this control law tracks a matrix of size
(n+ r)× (n+ r), which is larger than the Pk matrix that is

tracked in classical optimal control and in control over lossy
networks with the output zero strategy. Once more, it seems
to be a discrepancy. This stems from the (borrowing from the
estimation lexicon) correction part, i.e. the mechanism that
updates P̂k once the value of uk is known. Since, in the hold
case, after the correction what remains in zk is (1−θk)zk−1 (as
pointed out above, the term in uk is joined with the term in xk).
Whereas in centralized control (as well as in the hold strategy),
once uk is found and joined to the terms in xk, zk becomes
equal to zero. Hence, the three sub-matrices associated with it
become unnecessary, since the product will be equal to zero.

This fact implies that only Pxx,k needs to be tracked. This
has profound implications and is what lowers the effective
rank of the other approaches.

It was pointed out in Section III that the introduction of
cost terms relating to the correlation between the input and
the output would not change the structure of the optimal
controller. That statement can now be substantiated by noting
that by repeating the proofs presented herein under such
circumstances Equation (29) becomes

P̂+
k =

[
Qk Nk

N ′
k Rk

]
+ Â′P̂−

k+1Â (36)

whereas Equation (32) and Equation (34) remain untrans-
formed.

As pointed out before, this control strategy generalizes the
types of actuator outputs. Hence, it is no surprise that for
M = 0 it is equal to the controller presented in [22] and
reproduced in Section IV.

A. Domain of Application

Even though the novel optimal controller was derived under
a number of strict conditions, i.e. no noise/error of any kind,
the optimal control law has a wider domain of application.
That is, substituting this controller on certain systems that do
not comply with the error constraints still yield the optimal
control law.

This control law can be trivially extended into the case
of a (perfectly, e.g. full state measurement) known state but
with state disturbances, Equation (37), since the effects of wk

cannot be minimized by uk.

xk+1 = Axk +Buk + wk (37)

More generally, if the separation principle holds, then by
definition the presented controller will be optimal. This fact
can be used to extend this controller into the TCP-like network
protocols, i.e. network protocols in which the delivery status
is always known by the sender (note that this does not imply
retransmissions).

VII. OPTIMAL ACTUATOR STATE TRANSITION MATRIX

In past sections, it was derived the optimal control over a
lossy network, in which whenever there was no new control
message, the actuator applied a linear function of the last
applied value. Such linear function was multiplication by a



constant matrix M . However, the optimality was with respect
only to uk, i.e. on the controller side.

This section deals with the optimal value of the matrix M
and, of course, its effects on the optimal value that the actuator
should apply. In the previous section it was shown that zk,
hence both Mkzk−1 and uk, only has a bearing on the cost
function starting from Equations (29)-(30). Finding an optimal
Mk implies the minimization of such equations in order to
both uk and Mk, however, the minimum over uk is already
known from past sections.

Using the standard method for determining extremum
points, a derivative of Equation (29) is taken in order to Mk

and equated to zero. It is known that such extremum is a
minimum because Equation (29) is convex in zk, with a semi-
positive definite hessian. Continuing,

∂Jk (xk, zk−1)

2∂Mk
=zk−1

[
xk

zk

]′
P̂k

[
0n×r

(1− θk)Ir

]
=0r×r (38)

which can be extended into

(1− θk)zk−1 (x
′
kPxu,k + z′kPuu,k) = 0r×r (39)

or
zk−1

(
x′
kPxu,k + (M∗

k zk−1)
′
Puu,k

)
= 0r×r (40)

hence (
P−1
uu,kPux,kxk +M∗

k zk−1

)
z′k−1 = 0r×r (41)

which implies that

(M∗
k zk−1 − u∗

k) z
′
k−1 = 0r×r. (42)

Equation (42) shows that M∗ is a projection matrix that
provides the optimal estimate of u∗

k given zk−1, which is an
unsurprising result. M∗

k can be readily computed from the
equations that describe the evolution of the system. Just as
Lk in the controller, Mk can be preprogrammed into the
actuator in order to reduce the online computational load.
Furthermore, the equation that describe both u∗

k and M∗
k

converge to constant values.
Regarding Vk (xk, zk−1) given M∗

k , Equation (34) which
defines the hessian of Vk (xk, zk−1) still holds, however, two
of the terms of Equation (34) with Mk cancel each other, more
concretely,

(Mkzk−1)
′
Pux,kxk + x′

kPxu,kMkzk−1+

(Mkzk−1)
′
Pxu,kMkzk−1 = (Mkzk−1)

′
Pux,kxk+

x′
kPxu,kMkzk−1 + (Mkzk−1)

′
Pxu,kMkzk−1+

(Mkzk−1)
′
Pxu,kMkzk−1 − (Mkzk−1)

′
Pxu,kMkzk−1

(43)

the last equation has the trace of Equation (41) (and its
transpose) times M∗

k , which is zero by definition of M∗
k . This

implies that the first four terms of the previous equation are
equal to 0r×r. Hence, the hessian of the Vk(xk, zk−1) given
that Mk = M∗

k is

P̂k=

[
Pxx,k − θkPxu,kP

−1
uu,kPux,k 0n×r

0r×n −(1− θk)M
∗
k
′Puu,kM

∗
k

]
.

(44)

VIII. EVALUATION

This section evaluates the optimality of the controller pro-
posed in this paper. To this end, an unstable system was chosen
at random. The cost function (according to cost matrices
that are defined below) are evaluated for a set of (linear)
control laws during a finite amount of time. The controller
gain matrix that minimizes the cost function is compared to
the theoretically derived controller gain matrix. The agreement
between these values informs on the optimality of the proposed
control law.

Note, however, that it was only tested for Mk = 0r×r. This
choice was made because testing the optimality of the choice
of Mk would require performing many tests similar to the one
presented in this section. However, due to timing constraints
it will not be possible to include such results on this paper.

A. A First Order System

The system had a state-space representation

xk+1 = [1.5]xk + [1]uk (45)
yk = [1]xk (46)

which means that it is unstable with a discrete pole at z = 1.5.
The cost function was

Jk = x2
300 +

299∑
k=0

(
x2
k + 0.7u2

k

)
. (47)

The controller, as in uk = −Lkxk, was chosen from 300
linearly spaced points in the interval [0.5 1.4]. To smooth out
the inherent variance of θ, 5 · 106 simulations were made
for each value of Lk. Each simulation last for 300 steps. All
simulations were initialized with x0 = 1. The simulations were
made with θ̄ = 3

4 . All simulations were performed without any
type of noise of perturbation. Figure 1 depicts the results of
such simulations. A logarithmic scale was used in the y-axis to
allow a proper visualization of the many orders of magnitude
that are spawned by the graph.

There is an asymmetry between the error behavior on the
left side, i.e. close to Lss = .5, and the behavior on the right
side, i.e. close to Lss = 1.4, regarding the variance of the
curve, since as can be seen, in the former case, the curve is
rather well behaved, whereas in the later case, the curve is
rather jagged, having many peaks and valleys. This behavior
stems from the fact that when Lss = 0.5 the closed-loop
system has a pole close to z = 1, which in turn implies that
the control value changes slowly, therefore, the previous value
is not much different than the current control value. Hence,
the various simulations that differ only by the message error
sequence have similar cost, contributing to the observed low
variance. Such effect is not present on the right end of the
graph

As can be seen, there is a perfect agreement between theory
(i.e. L = 0.78) and practice (the simulation results).
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Fig. 1: Controller Gain versus Cost.

IX. CONCLUSION AND FUTURE WORK

The problem of optimal linear control has already been
solved in the literature, as well as the problem of control in
networks that output zero in the absence of a new control
value. The present article solved the problem of (linear) control
in systems in which the past output value is kept in case the
present control value is unknown.

The problem solved in this article is mathematical richer
than the output zero case. In fact, previous sections discussed
the conditions in which this case degenerates into the output
zero case.

Simulation results are in perfect agreement with the optimal
control gain computed theoretically.

Nevertheless, from an engineering perspective, now that the
optimal controller of both cases is known, it is paramount to
know, before deployment, which output strategy produces a
lower cost. This question will be addressed in future work.
Another aspect that will be addressed in future work regards
the independence of θk for both output strategies.
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