
Towards Dynamic Fault Tolerance on FTT-based Distributed Embedded
Systems

Sinisa Derasevic, Julián Proenza, David Gessner
∗

DMI, Universitat de les Illes Balears, Spain
sinishadj@gmail.com, julian.proenza@uib.es, davidges@gmail.com

Abstract
Distributed embedded systems (DES) have been tradi-

tionally designed to operate in static environments that do
not change over time. Flexible designs are increasingly be-
ing introduced to achieve continuous and correct operation
under dynamic environments. Some designs, such as the
Flexible Time-Triggered communication paradigm (FTT),
are focused on being able to modify the real-time operation
upon changing requirements imposed by the environment.
The on-going project Fault Tolerance for FTT (FT4FTT)
purports to increase the reliability of a DES based on the
FTT protocol by introducing static fault tolerance. In this
paper we give some hints on how to go one step beyond
by adding dynamic fault tolerance to the DES. This would
result in new systems that would combine the qualities of
flexible real-time operation and flexible and adaptive fault
tolerance, much enlarging their sphere of applicability.

1. Introduction
Traditionally, distributed embedded systems (DES)

have been designed to operate in static environments that
do not change over time. This has led to static approaches
that are inadequate for continuous and correct operation un-
der dynamic environments. The alternative are flexible ap-
proaches. Some of these aim to modify the real-time op-
eration upon changing requirements imposed by the envi-
ronment. This is the case of the Flexible Time-Triggered
communication paradigm (FTT) [7].

When faced with critical applications, real-time guaran-
tees may not be enough and high reliability may also be
required. With this idea in mind, the goal of the on-going
project Fault Tolerance for FTT (FT4FTT) is to show that it
is possible to significantly increase the reliability of a DES
based on the FTT protocol by introducing static fault tol-
erance, e.g. by redundantly executing the tasks in several
nodes and periodically voting on the replicas’ results.

However, when high-reliability becomes a main concern
in systems that must work in a changing environment, both
the specific tasks to be executed and the probabilities of
them suffering errors may also change over time. There-

∗2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this
work in other works. doi:10.1109/ETFA.2013.6648152

HaRTES
(master)Slave A

Slave B

Slave C

Figure 1. HaRTES architecture.

fore, being able to dynamically change which tasks are al-
located to each node and what degree of replication, and
thus fault tolerance (FT, hereafter), is granted to each task
(e.g. in how many nodes it is redundantly executed) would
clearly allow a more efficient use of the available resources.

Here we propose to go beyond the goal of project
FT4FTT by adding dynamic FT to the DES. This would
result in new systems that combine the qualities of flexi-
ble real-time operation and flexible and adaptive FT, much
enlarging their applicability.

2. The FT4FTT architecture
We take as a starting point the architecture that is being

developed within the FT4FTT project. The communication
subsystem of FT4FTT, currently under development, uses
the Flexible Time-Triggered paradigm (FTT) [7]. Specif-
ically, it replicates the switch of the Hard Real-Time Eth-
ernet Switching (HaRTES) architecture, which implements
FTT for Ethernet [9] providing highly reliable communica-
tion.

As shown in Figure 1, HaRTES implements a simplex,
not replicated, microsegmented star topology, with the
HaRTES switch as a central element that provides the most
relevant functions of FTT. In particular, the switch embeds
an FTT master. This master grants access to the network
following a centralized master/multi-slave scheme. This
means that a single message from the master triggers the
transmission of messages in several slaves. Specifically,
the master divides the communication time into rounds
called Elementary Cycles (ECs), which are synchronized
among and have the same constant duration in all simul-
taneous communications that may occur across the switch.
The ECs are comprised of a synchronous window followed
by an asynchronous window. The FTT master initiates
each EC with the transmission of a Trigger Message (TM)
that is flooded to all slaves. This message not only marks
the beginning of a new EC, inciting the slaves to trans-
mit their synchronous messages followed by their asyn-
chronous messages, but it also dictates the schedule for the
next synchronous window, i.e., it tells the slaves which syn-
chronous messages they should transmit during that win-



dow. The schedule is calculated by the master based on
the contents of a System Requirements Database (SRDB).
This database specifies the communication requirements
for different message streams, which are sequences of mes-
sages related to the same entity (e.g., a sequence of read-
ings of the same sensor) and are analogous to a task in
processor scheduling. Example requirements are deadlines
and periods, which are both expressed as multiples of the
EC length. Slaves may request changes to the SRDB, but
these requests are subject to an online admission control
performed by the master. The admission control basically
ensures that the SRDB is only updated with the requested
change if the system will still be schedulable afterwards.

For FT4FTT to achieve its high-reliability goal, it also
provides tolerance of faults in the nodes (now called slaves
in FTT) of the DES by using node replication. Node repli-
cation, like any proper replication scheme, must ensure
failure independence between replicas. This is achieved
by preventing error propagation [6] from one node to an-
other, i.e. by preventing an error generated in a given node
from creating new errors in another node. Specifically, er-
ror propagation can be prevented by preparing non-faulty
replicas to cope with the failure of another replica. The
difficulty of this depends on how that failure can manifest,
i.e., on the failure semantics [1] of the faulty replica.

If the node replicas have non-byzantine failure seman-
tics, then replica failures can be handled much more easily.
Enforcing such failure semantics can be achieved by local
mechanisms at each node or by enhancing the communi-
cation subsystem appropriately. The latter approach is the
choice in FT4FTT and it has the advantage that it can keep
the nodes simpler. Moreover, if switches are used such
that all communication must pass through them, which is
the case in the communication subsystem of FT4FTT, then
their global view of the communication can be exploited.

2.1. Node fault tolerance in FT4FTT

To achieve tolerance to node faults in FT4FTT we fol-
low the guidelines from [8]. Therefore, our design uses
active replication [10] to provide node fault tolerance, i.e.
several nodes execute each a replica of the same program
and, after each partial computation, they exchange their re-
sults and a voting takes place. We assume the replicas are
identical pieces of software, allowing to tolerate hardware
faults but not software (design) ones. Yet, we will generally
follow the terminology of N-Version Programming (NVP)
[8], despite NVP assuming replicas with design diversity.

Each replica is partitioned into segments. Each time
a replica finishes executing a segment, it issues a vector
of results of this segment, called cc-vector. Then a deci-
sion algorithm is executed to obtain a consensus cc-vector,
which is sent back to all replicas to be used in the following
computations. This mechanism, called cc-point, provides
masking of faults in a minority of replicas. We will use
a-replica to refer to any application program replica.

To improve the global dependability, FT4FTT performs
three additional FT operations on the a-replicas: error de-

tection (i.e. detection of a-replica errors); fault passivation;
and recovery of an a-replica when it has suffered a tem-
porary fault. Error detection is achieved by comparing the
cc-vectors with the consensus cc-vector calculated by vot-
ing. Fault passivation is done by disconnecting a node from
the network when it is affected by faults. Finally, a-replica
recovery is achieved by sending to a faulty a-replica all the
information it needs to resume its operation, as long as it
has not reached a significant number of consecutive errors
(which would be taken as indicating a permanent fault).

In principle, these operations are performed by the
nodes themselves, e.g. a node detects its own errors and an-
other node sends to a faulty node the information required
for recovery. However, since nodes can internally fail ar-
bitrarily, in order to increase the chances of errors to be
properly detected and recorded, and of nodes correctly re-
covering after failures, a device (either an additional node
or a new part of the switch) called Node Replication Man-
ager (NRM) also executes the same voting as the nodes.
This should provide it with all the necessary information
to detect the errors of all nodes, keep an error counter for
each of them, order the disconnection of one of them and
also help a node to recover, in case the severity of its fail-
ure does not allow it to recover by simply using the last
result it obtained in the voting. Therefore, the NRM acts as
a supervisor that provides additional support for the node’s
FT operations. The NRM will be internally duplicated and
compared to present crash failure semantics and, although
not being a single point of failure, it is advisable to replicate
it to increase its availability.

3. Dynamic FT in FT4FTT
Following the work described in [2] we define dynamic

FT as a system’s ability to be flexible and adaptive from the
point of view of its FT behaviours. Flexible fault-tolerant
systems have different degrees of FT available at configu-
ration time. An appropriate FT degree can be chosen de-
pending on the specific system installation or depending
on the applications the system executes. On the other hand,
adaptive fault tolerant systems adapt the degrees of FT to
changes during the runtime of an application.

3.1. Fault-tolerant tasks

We consider that an application is divided into tasks,
where fault-tolerant tasks use active replication [10]. Vot-
ing on the outputs for each set of replicated tasks takes
place at a new central element called Node Dynamic Repli-
cation Manager (NDRM), which replaces the NRM [8],
as explained in Section 3.2. Depending on its criticality,
a fault-tolerant task can require a higher or lower degree
of FT, meaning the number of nodes it is executed upon is
higher or lower. The specific tasks to be executed and their
degree of FT can change during system operation and the
NDRM will play a central role in managing these changes.

To have replicas of the tasks executing on different
nodes they need to be distributed first. We propose two
ways for tasks distribution. a) Software containing all



tasks possibly needed to run the application is kept only
by the NDRM. The NDRM sends tasks as a whole through
a communication channel and distributes them to the avail-
able nodes during normal operation. When there is a need
to load a new set of tasks, that corresponding software is
loaded only in the NDRM, which is the main advantage of
this approach, the disadvantage being the bandwidth con-
sumption and overhead of task distribution during normal
operation. b) The software is distributed to all nodes by
loading it into each of them during commissioning. During
operation, the NDRM sends through the communication
channel only the commands activating tasks already con-
tained within each node. The advantage of this approach
is its lower bandwidth consumption and overhead during
operation. The main disadvantage is the need for all nodes
to have enough memory for storing all the application soft-
ware. The latter is our choice since a reduced overhead of
task distribution during normal operation can be critical to
guarantee real-time response.

3.2. NDRM features

The central component supporting dynamic FT is the
NDRM. It orchestrates the execution of the application,
which consists of tasks requiring different and changing de-
grees of FT. This goes beyond voting on the results of each
FT task, and includes deciding and notifying the allocation
of specific tasks or task replicas to the different nodes.

The Mode Database (MDB) keeps all the modes (see
Section 4) of an application.

The NDRM includes the Fault Tolerance Requirements
Database (FTRDB), which keeps all the information re-
garding FT degrees of different tasks. For each task, multi-
ple degrees of FT can be defined. This means that the user
can define the minimum number of replicas below which
a task cannot be executed, and other desired FT degrees it
would be desirable to have for that task.

The NDRM also hosts the Resource Database (RDB)
that keeps track of the nodes’ available resources, allowing
for the NDRM to perform the allocation of tasks to nodes.

As with the NRM [8], the NDRM outputs are crucial to
the normal system operation. If it fails and starts sending
arbitrarily erroneous messages, it could cause a global fail-
ure. To avoid error propagation it is necessary to restrict the
failure semantics of the NDRM such that it is only allowed
to fail by crashing. For this, its circuits are duplicated and
compared. On the other hand, the NDRM represents a sin-
gle point of failure and therefore needs to be replicated.
Both aspects will be discussed in later works.

4. System operation in the absence of faults:
FT modes

To allow a fault-tolerant application to operate in differ-
ent environments, or under different conditions, our system
defines FT modes kept by the NDRM’s MDB. Each mode
defines tasks to be executed, their FT degrees and a traffic
schedule for those tasks.

A change of the current FT mode could be triggered by

the user or by the system itself when it senses environmen-
tal changes or detects other changes in the system. Ex-
amples of reasons for changing the FT mode are workload
changes in a radar system [3], an airplane changing from
taxing to flight mode [5], or a spacecraft entering a high-
radiation area [4].

To trigger a mode change we propose two solutions.
a) Nodes sensing the environment are in charge of trigger-
ing mode changes. This operation should be executed by
multiple nodes for increased reliability, e.g. active replica-
tion could be used, and the NDRM votes on mode change
requests sent by replicas. b) The NDRM directly senses the
environment and triggers the changes. This is our prefered
option since the NDRM can be trusted, i.e. it has restricted
failure semantics and it will not be a single point of failure,
and, unlike the previous solution, it doesn’t consume scarce
resources of the nodes. This solution could have the disad-
vantage of adding more responsibility to the NDRM, which
can decrease its dependability since the software it executes
becomes more complex and therefore less reliable.

When a mode change has to occur, in line with the work
in [2], there are two solutions for the tasks currently in ex-
ecution: a) Wait for all, or only the critical ones, to finish
execution. b) Perform the change immediately not leaving
the application in an undefined state. A complete descrip-
tion of how to deal with this problem is left as future work.
However, it is obvious that both the system dependability
and meeting the application deadlines must not be compro-
mised during the mode change operation.

Primarily, when changing modes, schedulability analy-
sis of tasks inside each node and of the corresponding mes-
sages in the channel is required. This will tell whether there
is a specific allocation of tasks to nodes that is schedulable.

After the schedulability analyses have found a suitable
allocation, each node needs to be notified of its allotted
tasks. The NDRM is in charge of notifying the nodes and
order the task activations at the right time.

4.1. Adaptivity within an FT mode

While an application runs in a specific mode, a task may
require an increase of FT degree, i.e. an increase of the
number of active replicas. This can be done by allocating
new task replicas to nodes, if there are nodes with enough
available resources and if the increase of traffic is schedu-
lable. If not, tuning of existing task allocation and FT de-
grees would require consulting the RDB and FTRDB of
the NDRM, respectively. Then, less critical tasks could be
deallocated by decreasing the number of their active repli-
cas and/or non-critical tasks could be aborted and deallo-
cated, thus freeing resources. In any case, the number of
active replicas cannot be decreased below the minimum FT
degree defined in the FTRDB. Newly allocated replicas of
tasks would have to be synchronized with the existing ones.

4.2. Algorithm for application execution

Application execution is divided in two phases: initial-
ization phase and normal operation phase.

The initialization phase is described by the following



steps: a) The Software to be executed is loaded into all
nodes and the NDRM. b) The MDB is populated based on
specific application and its operating modes. c) The RDB is
populated based upon connected nodes and their resources.
d) An FT mode is selected, in this case the initial mode.
e) The FTRDB is populated with the application tasks’ FT
requirements. This population is done depending on the
selected mode. f) The schedulability analysis of node re-
sources is performed, and a resource schedule is created.
g) The schedulability analysis of traffic is done. The FTT
master is in charge of creating a traffic schedule. The Sys-
tem Requirements Database (SRDB) contains all the in-
formation required for the traffic management. Before the
schedule is created the FTT master goes thorough admis-
sion control and if this phase is completed, the SRDB is up-
dated [9]. h) The FTT master creates a schedule based on
information from the SRDB and that schedule is included
in the trigger message. i) The NDRM notifies the nodes of
the allocation of the tasks and waits for an acknowledgment
from each one of the nodes. j) After the allocation notifica-
tion is confirmed, a “start signal” is generated telling that
application execution can be initiated. This “start signal” is
part of the next TM. Also, the RDB will be updated since
some of the nodes’ resources are now utilized by the allo-
cated tasks. k) After the TM with the “start signal” has
been received by each node, execution starts at the time
instant defined by the application.

Normal operation starts after the initialization phase.
When in normal operation, the system can change its FT
mode. a) The command of task deallocation is sent to all
the nodes. b) The RDB is cleared. c) The rest of the algo-
rithm continues from step "c)" of the initialization phase.

5. System operation in the presence of faults
The NDRM does the error detection. Active replication

of the tasks and voting, besides being used to compensate
errors in a minority of replicas, are also used for error de-
tection. Comparing the voting results with the results of
the replica allows detecting errors in a node that executes
a replicated task. If some node does not execute replicated
tasks, meaning the error cannot be detected by voting, the
omission of frames coming from non-replicated tasks exe-
cuted on that node is used for error detection.

There are three ways to deal with errors based on their
seriousness: recovery, reintegration and reconfiguration.
The recovery of a faulty task replica is done using the
consensus value reached by the voting procedure of the
NDRM. Each time an error is detected in a node, an er-
ror counter(ErC) in the NDRM is increased for that node.
For each error-free task segment executed by the node, the
ErC is decreased until it reaches it’s initial value. The rein-
tegration of a node is done when the node’s ErC reaches
a threshold. Node resets, reset counter(ReC), also kept by
the NDRM, increases, a node’s ErC is reset and reintegra-
tion information is sent by the NDRM in order to reinte-
grate the node. This information allows all the tasks be-
longing to a reseted node to be resynchronized. If the ReC

reaches a predefined threshold, a node is permanently dis-
connected. Reconfiguration is done when some node fails
permanently. All the tasks belonging to that node need to
be reallocated to other nodes. The same procedure as de-
scribed in Section 4.1 needs to be carried out.

6. Conclusions
We have explored how to design a system that can adapt

both its real-time response and its level of fault tolerance
to the changing requirements imposed by the environment
and to the natural operation phases of the application. More
specifically, we have taken as starting point a previous
architecture that allows fault-tolerant operation on a dis-
tributed embedded system based on the FTT paradigm, and
presented a first discussion on how to extend the function-
ality of the architecture to support dynamic fault tolerance.

There is plenty of future work to complete our architec-
ture. This includes the refinement of the algorithms pre-
sented, the building of models of the system to simulate
the resulting operation and to quantify the reliability val-
ues achieved. Moreover, it is also planned to solve some
open problems, such as the replication of critical compo-
nents such as the NDRM.

7. Acknowledgement
This work was supported by project DPI2011-22992

and grant BES-2012-052040 (Spanish Ministerio de
Economía y Competividad), by FEDER funding, and by
the Portuguese government through FCT grant Serv-CPS
PTDC/EEA-AUT/122362/2010. Sinisa Derasevic was
funded by a Erasmus Mundus EUROWEB scholarship.

References
[1] F. Cristian. Questions to ask when designing or attempt-

ing to understand a fault-tolerant distributed system. In
Proc. 3rd Brazilian Conference on Fault-Tolerant Comput-
ing, Rio de Janeiro, Brazil, 1989.

[2] J. Goldberg, I. Greenberg, and T. Lawrence. Adaptive fault
tolerance. In Advances in Parallel and Distributed Systems,
Proc. of the IEEE Workshop on, pages 127–132, 1993.

[3] O. González, H. Shrikumar, J. A. Stankovic, and K. Ra-
mamritham. Adaptive fault tolerance and graceful degrada-
tion under dynamic hard real-time scheduling. In Real-Time
Systems Symp., Proc., The 18th IEEE, pages 79–89, 1997.

[4] M. Hecht, H. Hecht, and E. Shokri. In proc. of ieee adap-
tive fault tolerance for spacecraft. In Aerospace Conference
Proceedings, pages 521–533 vol.5, 2000.

[5] H. Kopetz, R. Nossal, R. Hexel, A. Krüger, D. Millinger,
R. Pallierer, C. Temple, and M. Krug. Mode handling in the
time-triggered architecture. Control Engineering Practice,
6(1):61–66, 1998.

[6] J.-C. Laprie. Dependability: Basic Concepts and Terminol-
ogy. Springer-Verlag, Wien New York, 1992.

[7] P. Pedreiras and L. Almeida. The flexible time-triggered
(FTT) paradigm: an approach to QoS management in dis-
tributed real-time systems. In Proc. Int. Parallel and Dis-
tributed Processing Symposium. IEEE Comput. Soc.

[8] J. Proenza, M. Barranco, J. Llodra, and L. Almeida. Using
FTT and stars to simplify node replication in CAN-based
systems. In Emerging Tech. Factory Automation (ETFA),
IEEE 17th Conf. on, pages 1–4, 2012.



[9] R. Santos. Enhanced Ethernet Switching Tecnology for
Adaptibe Hard Real-Time Applications. PhD thesis, Uni-
versidade de Aveiro, 2010.

[10] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases and dis-
tributed systems. In Distributed Computing Systems, Proc.
20th International Conf. on, pages 464–474, 2000.


