
Multiplatform Management of a Hard
Real-Time Ethernet Switch

Aleksander Pleszko, João Paulo Barraca
DETI/IT - University of Aveiro

Aveiro, Portugal
{alek, jpbarraca}@ua.pt

Joaquim Ferreira, Pedro Gonçalves
ESTGA/IT - University of Aveiro

Aveiro, Portugal
{jjcf, pasg}@ua.pt

Abstract— The Hard Real-Time Ethernet Switch (HaRTES)
allows using the same network to handle multiple traffic flows,
without compromising the performance of real-time applications.
Furthermore, it also provides flexible and on-line scheduling
techniques with admission control capabilities, thus real-time
communications flows can be added, removed and updated
online with strict temporal isolation. However, HaRTES lacked a
standard management interface to configure its parameters and
view its status. This paper describes a multiprotocol (SNMP and
NETCONF) management interface design, and implementation.
It also presents a preliminary validation of the two management
technologies.

Keywords— Embedded Systems, SNMP, NETCONF, Ethernet

Switch, Quality of Service, Flexible Time-Triggered, Real-Time
communications

I. INTRODUCTION
Networked Embedded Systems (NES) are widely

disseminated in many application domains ranging from
industrial automation to building automation and vehicular
system. Some application domains exhibit strict timeliness,
predictability and precedence constraints. In these cases,
special-purpose real-time communication networks, known as
fieldbuses, must be used to achieve the desired properties.

One network technology that became widely used in these
systems is Ethernet, however, it was not originally developed
to meet the requirements of NES, namely in what concerns
key aspects such as predictability, timeliness and reliability.
There are currently available technologies, that enable
mechanisms of guaranteed Quality of Service (QoS), such as
MPLS [1] and RSVP [2] especially combined with IntServ [3]
and DiffServ [4] models, however they only provide statistical
guarantees.

Over the last decade, several Ethernet-based protocols have
been developed, e.g.: Ethernet-Powerlink, Profinet, EtherCAT
and Ethernet/IP, which take advantage of some of Ethernet’s
appealing attributes, e.g. large bandwidth, cheap silicon and
high availability, while removing or reducing the sources of
non-determinism arising from its MAC protocol and/or from
the current switched architecture. At the Ethernet level,
802.1Qat allows the implementation of the DiffServ model
through its priority field, while the Stream Reservation

Protocol (SRP) [5], which was recently proposed as the
standard for end-to-end reservations at the Ethernet level,
follows the IntServ model.
However, the timeliness guarantees provided by those
protocols are essentially static, based on pre-run-time analysis.
On-line admission control is not generally available and
neither is on-line adaptation of the communication
requirements according to effective needs or to a quality-of-
service (QoS) adaptation policy. This has motivated the
development of a new generation of Ethernet switches, Hard
Real-Time Ethernet Switch (HaRTES) [6], able to provide
timeliness guarantees, efficient bandwidth usage and support
for operational flexibility as required by dynamic real-time
distributed embedded systems. The new switching platform
was build upon recent work on the FTT (Flexible Time-
Triggered) communication paradigm to develop Ethernet
switches with enhanced transmission control, traffic
scheduling, service differentiation, transparent integration of
non-real-time nodes and improved error confinement
mechanisms, particularly with respect to temporal
misbehaviors. For the purpose of preforming QoS
reservations, SRP support was added.
However, currently there is no standardized interface for
remote HaRTES management, i.e., parameterizing and
monitoring the switch behavior. Therefore, efficient and
deterministic management tools are required to take advantage
of the properties of the HaRTES switch.

This paper describes a multiplatform management interface
design, and implementation and evaluation for a HaRTES
switch and presents a preliminary validation of the two
management approaches, from the perspective of management
latency and variance.

The rest of the paper is organized as follows. Section 2
presents related work referring to management of network
system. In Section 3 The Real-Time Ethernet Switch and its
features i.e. QoS technologies are described. Section 4
presents the two proposed management technologies applied
to HaRTES switch. Section 5 describes the implementation of
the switch management interface, while Section 6 presents
results regarding the latency of two well known management
solutions. Finally, Section 7 concludes the paper and proposes
some future lines of work.

GC'12 Workshop: The 4th IEEE International Workshop on Management of Emerging Networks and Services

978-1-4673-4941-3/12/$31.00 ©2012 IEEE 829

II. RELATED WORK
SNMP is widely adopted by most of the real-time Ethernet

(RTE) equipment supporting several RTE protocols, e.g., TT
Ethernet (TTE), Ethernet Powerlink, Profinet, Industrial
Ethernet, etc.

The TTE A664 Pro Switch [7] has a built-in management
module for network monitoring (SNMP v1). The TTE A664
Pro Switch supports secure network management and allows
data loading and querying of health and status information.
Weidmuller IE-SWxx-M Industrial Ethernet switches [8] can
also be managed via SNMP. The IE-SWxx-M switches
support traps for the link-up, link-down, confirmation error,
cold restart and warm restart functions. Profinet [9], also uses
SNMP for maintaining and monitoring network devices.

Ethernet Powerlink adopts a proprietary protocol for the
network management derived from CANopen, based on
Process Data Objects (PDO), Service Data Objects (SDO),
and Network Management (NMT) Objects. According to [10]
Ethernet Powerlink routers are managed by Powerlink SDO
and optionally by the SNMP v3.

A common property of all previous mentioned RTE
protocols is that they do not allow dynamic reconfiguration
with real-time guarantees. They are fully static systems in
which all operating conditions are completely defined at pre-
runtime In these RTE protocols system reconfiguration
involves stopping the system, apply the modifications and
restart it. Since monitoring is not a time-critical activity and
maintenance is performed offline, SNMP is well suited for
these tasks in the case of the above mentioned RTE protocols.
NETCONF, a newer technology, is other valid alternative,
however and to the best of our knowledge, it is not supported
by current RTE equipment.

For the specific case of FTT Ethernet networks based on the
HaRTES switch and supporting timely operational flexibility,
it is necessary to assess the performance of network
management technologies. Notice that, both SNMP and
NETCONF do not provide real-time guarantees, however this
is no impairment for HaRTES, since modifications of the
communications requirements are not made directly by the
management services. Online requests to modify
communication requirements are processed by the admission
control and, if accepted, their timeliness is secured by real-
time scheduling.

III. FTT-ENABLED SWITCH
The FTT-enabled Ethernet switch was described in a

number of recent publications that address its main concepts
and features [11] and that discuss different design options, e.g.
regarding the integration of the FTT master [12] and of traffic
scheduling servers [13]. HaRTES is an FTT-enabled switch
based on the Flexible Time-Triggered (FTT) paradigm with
the FTT master included inside the switch (Master Module in
Figure 1).

HaRTES is designed for micro-segmented networks and
follow the Flexible Time-Triggered (FTT) paradigm,
supporting two main traffic classes, real-time and non-real-

time, the former being further divided in synchronous and
asynchronous. The synchronous traffic is time-triggered and
scheduled on-line. This class of traffic is polled by the switch
using a master/multi-slave transmission control technique,
according to which a single poll is broadcast once every so-
called Elementary Cycle (EC) of fixed duration, using a
specific message called Trigger Message (TM). Nodes decode
the TM and transmit immediately the scheduled messages and
the switch takes care of their serialization. The scheduling is
done in a way that all messages referred in a TM fit in the
respective EC. The FTT master holds information about the
nature of the data exchanges regarding the type of addressing
(unicast, multicast and broadcast) and which end nodes are
involved. With this information, the master computes which
messages follow disjoint paths and build schedules that exploit
this parallelism, increasing the aggregated throughput [13].

Figure 1 - Functional architecture of the server-based

FTT-enabled Ethernet switch [11].

The asynchronous and non-real-time traffic, on the other
hand, is sent to the switch without any transmission control
thus arriving at any instant. The switch confines this traffic
within the associated servers, thus making sure that it does not
interfere with the synchronous one and also making sure that
asynchronous real-time traffic is handled with servers that
have higher priority than those used for non-real-time traffic.
One very important feature of this kind of traffic is the
absence of need for transmission control in the end nodes that
boosts the flexibility of the system since it is now possible to
connect any kind of existing Ethernet node without
modification, e.g., general purpose workstations with general
purpose operating systems and network drivers, being its
traffic automatically confined by the switch.

Figure 1 presents the functional architecture of the switch to
support server-based scheduling. It follows closely the one in
[12], which does not support server-based scheduling, with

830

two main modules, the Switching Module and the Master
Module. The traffic arrives via the input ports in the former
module and is submitted to the Classifier and Verifier Unit
that classifies and validates the received massages. The data
messages are forwarded directly to the memory unit while
FTT control messages, e.g., negotiation messages, are
transferred to the Master Module. The memory is divided in
three independent zones, each one for each traffic class,
namely synchronous, server and non-real time. The other main
block inside the Switching Module is the Dispatcher Unit that
handles the output queues per traffic type and, according to the
scheduling per- formed by the master and conveyed in the
Trigger Message, transmits the selected messages from the
memory directly. The Master Module executes a complex set
of operations, namely the admission control, QoS manager,
scheduler and it also implements a System Requirements
Database to store the information related to the traffic
management [14].

IV. MANAGEMENT TECHNOLOGIES
Over the last two decades IETF produced several network

management standards notably Simple Network Management
Protocol (SNMP) [15], Common Open Policy Service (COPS)
[16], and more recently NETCONF [17]. SNMP technology,
despite some well-known issues, became the de facto
management technology for IP networks. During the last years
IETF dedicated efforts to standardize its successor, the
NETCONF technology, aiming to solve some shortcomings of
SNMP, while adding improvements mainly related with
security and encoding efficiency [18], while offering a more
simplified development process.

SNMP follows a client/server model in which the managed
device, called SNMP agent, assumes the server role, while the
SNMP Network Management Systems (NMS) assumes the
client role. The roles between SNMP elements are inverted in
event reporting scenarios where the SNMP agent notifies the
SNMP manager by means of unsolicited notification (TRAP)
operations. SNMP agent stores status and configuration
information (such as various types of statistics). Management
is done through querying and modifying the appropriate
variables in the managed device, sending SNMP operations
(Get, GetNext, GetBulk, and Set) to the SNMP agent. Protocol
operations are encoded in a very efficient manner and
transported over User Datagram Protocol (UDP), resulting in a
lightweight message transport specially conceived for
overloaded networks.

The SNMP protocol is widely used today in network
management as well as in the area of equipment management,
mainly as a monitoring tool. Despite the fact that the status of
SNMPv1 and SNMPv2 is historic and only SNMPv3 is a full
standard, SNMPv3 is not much used in network management
[24], and SNMPv2c is dominant.

SNMP information is stored in a repository named
Management Information Base (MIB). Each object in the
database has assigned a name, a value, a type, a description
containing detailed information needed to correct

implementations, and a set of operations you can perform on
the object (read/write value). Objects are stored as leaves in
the tree-like structure. An object can only be identified when
the full path to it is provided.

Network Configuration Protocol (NETCONF) [17], is a
network management protocol that provides mechanisms to
install, manipulate, and delete the configuration of network
devices as well as its monitoring. NETCONF design followed
a layered approach composed of four layers: a transport layer
that implements the information transport, a RPC layer that
implements the XML-RPC remote procedure call, an
operations layer that implements NETCONF operations and a
content layer containing the configuration data.

Although NETCONF [19] has been designed to be
independent of the data modeling language, the IETF
recommends using an Extensible Markup Language (XML).
YANG is data modeling language specially designed to handle
the configuration data as well as the protocol messages. The
language that was conceived to ease the human’s
interpretation, follows a C like syntax and has an XML
equivalent named YANG Independent Notation (YIN)
intended for the machine reasoning.

NETCONF base protocol defines nine operations.
Additionally RFC 5717 defines a partial lock mechanism for
NETCONF Remote Procedure Calls (RPC), allowing partial
configuration blocks, defined by means of a filtering XPath
expression. NETCONF elements may additionally define new
operations during the capability exchange process, which, if
common to both peers, can then be used during the session.

NETCONF management information can be carried by a set
of security enabled transport protocols such as SSH [20],
SOAP [21], BEEP [22], or TLS [23]. In order to promote
interoperability SSH support is mandatory. However,
management elements are free to negotiate an alternative
secure communication protocol.

V. HARTES MANAGEMENT INTERFACE
Due to the modular nature of the switch architecture,

integrating management functions to the existing system
implied the design and instantiation of an additional module.
This module exposes internal state of the switch, by operating
over information existing at the different modules, to the
external world. A custom communication interface was
developed for this purpose. It provides access to the internal
state variable through a very efficient Request/Response
model based on the existence of well-known attributes.
Managing a given attribute (e.g. getting its value) implies
issuing a command stating the attribute to retrieve. Currently,
it is only supported manipulation of attributes, lacking support
for the generation of events. While this interface aims to
provide an efficient way of communicating with the internal
components of the HaRTES switch, it lacks standardization.
Therefore, an architecture was devised to interface the
HaRTES switch with standard management tools. As depicted
in Figure 2, at the core of this architecture relies the
Management Server component. It acts as a bridge between
the communication socket it provides and the HaRTES

831

modules. The communication protocol used in this socket is
kept private. However, wrappers allow integration of
additional existing management solutions.

SNMP
Daemon

yangcli

Management
Server

HaRTES
MIBs

SubAgent

HaRTES
NETCONF
WrappersSwitch Hardware

UDP/TCP
port 161

TCP (SSH)
port 830

Master
Module

Internal Interface
Socket Communications

SNMP
v1,2c,3

Netconf
SSH

Figure 2 – General architecture of the management
components.

Currently, two wrappers were developed, implementing

three different MIBs, through two management solutions. The
management solutions are SNMP and NETCONF. The MIBs
are the IF-MIB [26], SRP MIB [27] and a custom developed
MIB, the HaRTES MIB. The parameters of the three MIBs are
available through both SNMP and NETCONF as the wrappers
integrate directly with the management software of both
solutions. In the case of SNMP, the wrapper integrates as a
subagent of the SNMP daemon, while in the case of
NETCONF, it integrates as a subagent of the yangcli tool.

Figure 3 depicts the simple MIB created for the purpose of
providing more information regarding the internal operation of
the HaRTES switch. For the purpose of analyzing QoS
reservations, the SRP MIB will be used.

ATNOG-HARTES-MIB generated by evoking: snmptranslate -
M+. -mATNOG-HARTES-MIB -Tp -IR hartes
+--hartes(123321)
 |
 +--hartesObjects(1)

|
 +-- -R-- Integer32 eCycleDuration(1)
 +-- -R-- Integer32 sasWindowDuration(2)
 |
 +--gwTable(3)
 | |
 | +--gwEntry(1)

| | Index: turnaroundTime, switchingDelay,
 | | transmissionTime
 | |
 | +-- -R-- Integer32 turnaroundTime(1)
 | | Range: 1..2147483647
 | +-- -R-- Integer32 switchingDelay(2)
 | | Range: 1..2147483647
 | +-- -R-- Integer32 transmissionTime(3)
 | Range: 1..2147483647
 |
 +-- -R-- Integer32 idleTime(4)
 +-- -R-- Integer32 qosType(5)
 +-- -R-- Integer32 maxPeriodicMsg(6)
 +-- -R-- Integer32 maxAPeriodicMsg(7)
 +-- -R-- Integer32 mtu(8)
 +-- -R-- Integer32 maxPckSize(9)
 +-- -R-- Integer32 bRate(10)

 +-- -R-- Integer32 interfaces(11)

Figure 3 – Internal state HaRTES MIB.

The process of querying the HaRTES switch takes several

steps. It starts when the management protocol triggers a query
in the local tool (yangcli or snmpd). If the attribute queried
is present in the MIBs supported, the request is translated to an
internal query, and then dispatched to the Management Server.

This component will then validate the request, locate the
module where the information is stored, and then provide with
the answer requested. It should be made clear that the
existence of this socket-based interface was devised due to
several reasons. First it better isolates operation of the
wrappers and the Management Server. This aims at reducing
the impact of management operations to the Master Module of
the HaRTES switch. Isolation also reduces the number of
exploits through the management interface, as if required,
firewall characteristics can be added to the Management
Server. The second characteristic of this interface is that it
allows reuse of the same management interface to several
different management solutions. In this case the same interface
can be easily used with both SNMP and NETCONF, while
relying on components requiring a small number of
modifications from the components auto-generated by the
support tools.

VI. EVALUATION AND RESULTS
We evaluated the prototype management interface to

determine its suitability for the task of managing a distributed
system with real time constrains. It is not expected for SNMP
and NETCONF to be real time aware. However, the inherent
latency and variations observed when using these management
methods will have impact on the remaining systems of a
distributed management infrastructure. We also aim at
increase the comprehension of the latency penalty of both
solutions, in comparison with our protocol agnostic interface.

Our experimental setup consisted of a Pentium(R) Dual-
Core CPU T4400 @ 2.20GHz and 2GB of RAM, running
Ubuntu 12.04 LTS 32 bits. Software modules included SNMP
version 5.7.1, NETCONF version 2.2-3 and FTT-Server
version 2.5.3-1. Clients were launched as separate processes
and the FTT-Server custom module was on a separate thread.

Evaluation focused in triggering a series of management
commands as fast possible, while a passive monitoring
application was capturing all communications being made.
This approached allowed us to monitor management traffic
without causing much interference to the management
process. Values of jitter and communication latency
experienced by the client application were afterwards
extracted from the log. All analysis was done offline after the
experiments completed. We aimed at minimizing external
delay factors. Therefore, no network was actually used and all
communication was done to the local host. If an Ethernet
connection were to be considered, we would observe a fixed
amount of latency due to transmission buffers, reception
buffers, as well as transmission to the medium and other
existing queues. Also, jitter would be added in non-easily
deterministic way [25].

Our work focused in the development of a protocol agnostic
management interface, enabling the HaRTES switch to be
managed both through SNMP (v2c and v3) and through
NETCONF. Therefore, we evaluated the performance
constrains of both approaches. In order to have a clear idea
about the overhead introduced by each protocol, and the
absolute minimum bounds we can expect to experience given

832

the current hardware, the internal, protocol agnostic,
communication delay was also measured.

Each management operation, for each protocol, was
repeated 150 times. Afterwards, the top 10 values (roughly
6.67%) with higher difference from the average of the entire
set of experiments were discarded. The remaining 140 values
were considered for analysis, and consider a 95% confidence
interval.

As a reference for the analysis, we measured the internal
latency from the time the request was received, until the
switch management software was queried and a result was
provided to the management protocol. The latency values
obtained are depicted in Figure 4. Internal queries were always
lower than 250us, and presented an average of 156us +/-
5.54us, with a standard deviation of 33.5us. In order to
calculate the penalty of SNMP or NETCONF, this average
value should be deducted. While observing some jitter in
internal communications, 95% of the results stayed within
7.10% of the average value. Because we are dealing with
microseconds, and given the hardware available, we expect
this jitter to have minimum impact in management.

Figure 4 - Internal communication latency independently
of the management approach.

SNMP was evaluated using its two most used varieties:

SNMP v2c and SNMP v3. All management actions focused in
getting a single value. As described before, SNMP considers
UDP communications and small individual transactions
following a request/response approach with two packets for
each transaction. All information required is contained in the
request, and the reply also takes a single UDP packet. SNMP
v3 follows the same approach but introduces changes to
messages in order to add support for shared key
authentication. Still, each management action is composed by
a simple exchange of messages through UDP. TCP can also be
used for SNMP v3, but this way of operation was not included
in this work.

Figure 5 depicts the values obtained for both SNMP v2c
and SNMP v3. Due to the slightly higher complexity of SNMP
v3, the management latency was a little higher than SNMP
v2c. The first presented an average query latency of 1.4ms +/-
0.041ms, with a standard deviation of 92.1us, while SNMP
v2c presented an average query latency of 0.9ms +/- 0.034ms,
with a standard deviation of 207.5us. It is interesting to
observe that SNMP v2c presents lower average latency, but
also less error. In part, the smaller number of packets of each
transaction when using SNMP v2c can explain this behavior.

If the internal latency values are subtracted, SNMP v2c
presents a latency increase of 577%, while SNMP v3 presents
an increase of 910%.

Figure 5 - Scatter chart of SNMPv2 and SNMPv3

The same methodology was followed in order to evaluate
NETCONF. Many transport methods are supported by the
latest standard. As SSH is mandatory, and the one most
commonly available, we focused in evaluating NETCONF
over SSH. Because SSH is a secure protocol supporting both
peer authentication and private communications, the overhead
produced is expected to be much higher. Figure 6 depicts the
latency observed for the best 140 queries. As shown,
NETCONF introduces much higher latency into management
functions, averaging at 583ms +/- 15ms, with a standard
deviation of 92.1ms. The added overhead is so high that the
values obtained for internal latency are three orders of
magnitude lower, and therefore negligible. The error margin
itself is two orders of magnitude higher, which reflects the
high overhead of this management protocol.

Figure 6 - Scatter chart of NETCONF latency

From the evaluation of these three management approaches,

it is clear that the use of any standard compliant management
protocol will introduce very high latency and variability in
processes. The lightest solution is SNMP v2c, followed by
SNMP v3. However, the term lightest can be very misleading
as it increases latency by a factor of 5. NETCONF falls in a
completely different bucket, increasing management latency
by a factor of almost 4000. It should be taken in consideration
the advantages of authenticating communication peers and
secure the management process, which NETCONF supports.
However, because best practices state that management traffic

833

should be transported in networks completely isolated from
clients (e.g. dedicated VLANs), these advantages become less
clear.

However, when considering real-time systems, with
dependencies in remote managed systems, lower latency will
result in higher scalability for the system, as well as higher
levels of determinism. In scenarios where critical timings must
be observed, such as automotive or industrial scenarios,
SNMP still proves to be the best management approach if
standards are to be respected. Custom developed solutions
show to provide higher performance, at the cost of
interoperability and eventually future evolution.

Figure 7 - Latency of the different management methods in
comparison with internal latency

VII. CONCLUSIONS
Networked embedded systems, relying on Ethernet-based

communication infrastructures, are becoming increasingly
popular in many application domains with strict timeliness and
dependability requirements. Real-time Ethernet-based
protocols, developed over the last decade, fail to provide
flexibility in terms of online adaption of the communication
requirements. The Hard Real-Time Ethernet Switch,
developed within the scope of the Flexible Time-Triggered
Switched Ethernet protocol allows using the same network to
handle multiple traffic flows, with strict temporal isolation, so
that real-time flows can coexist with non real-time ones.
The HaRTES switch lacked a standard management interface
to configure its parameters and monitor its status. This paper
described the design process of a multiplatform (SNMP and
NETCONF) management interface to help monitor the switch
performance and configure its parameters. Experimental
results shown that smaller delays introduced by SNMP
protocol make it better to monitor and configure the HaRTES
switch.

Future work will include the implementation of
asynchronous notification operations, as well as full
management support, to enable online configuration of the
switch. We are also considering a more detailed analysis of
SNMP and NETCONF adequacy for hard real-time
applications.

REFERENCES
[1] E. C. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label

Switching Architecture, RFC 3031, 2001.
[2] B. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource

ReSerVation Protocol (RSVP) -- Version 1 Functional Specification,
RFC 2205, 1997.

[3] B. Braden, D. Clark, and S. Shenker, Integrated Services in the Internet
Architecture: an Overview, RFC 1633, 1994.

[4] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, M. Speer, B.
Braden, B. Davie, E. Felstaine, and J. Wroclawski, A Framework for
Integrated Services Operation over Diffserv Networks, RFC 2998, 2000.

[5] "IEEE Standard for Local and Metropolitan Area Networks---Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation
Protocol (SRP)," IEEE Std 802.1Qat-2010 (Revision of IEEE Std
802.1Q-2005), vol., no., pp.1-119, Sept. 30

[6] R. Santos, "Enhanced Ethernet Switching Technology for Adaptable
Hard Real-Time Applications", PhD Thesis, Department of Electronics
Telecommunications and Informatics Uninersity of Aveiro, 2011.

[7] http://www.tttech.com/products/ttethernet/flight-and-rugged-
hardware/switch-a664-pro-24/ - Accessed June 29, 2012.

[8] http://www.weidmuller.ru/news/pi_ie_en.pdf - Accessed June 27, 2012.
[9] PROFIBUS International: PROFINET Specification, Profinet IO

Application Layer Service Definition
[10] EPSG Draft Standard 301, Ethernet POWERLINK Communication

Profile Specification Version 1.1.0, EPSG 2008.
[11] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and L. Almeida,

"Designing a costumized Ethernet switch for safe hard real-time
communication", Factory Communication Systems, 2008. WFCS 2008.
IEEE International Workshop on, 2008, pp. 169-177.

[12] R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira, and L.
Almeida, "A synthesizable ethernet switch with enhanced real-time
features", Industrial Electronics, 2009. IECON '09. 35th Annual
Conference of IEEE, 2009, pp. 2817-2824.

[13] R. Santos, A. Vieira, P. Pedreiras, A. Oliveira, L. Almeida, R. Marau,
and T. Nolte, "Flexible, efficient and robust real-time communication
with server-based Ethernet Switching", Factory Communication
Systems (WFCS), 2010 8th IEEE International Workshop on, 2010, pp.
131-140.

[14] R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira, L. Almeida,
and T. Nolte, "Implementing Server-Based Communication within
Ethernet Switches", 2nd Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems (CRTS'09), Washington,
USA, 2009.

[15] J. Case, M. Fedor, M. Schoffstall, and J. Davin, Simple Network
Management Protocol (SNMP), RFC 1157, 1990.

[16] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, The
COPS (Common Open Policy Service) Protocol, RFC 2748, 2000.

[17] R. Enns, NETCONF Configuration Protocol, RFC 4741, 2006.
[18] P. Gonçalves, J. L. Oliveira, and R. Aguiar, "A study of encoding

overhead in network management protocols", International Journal of
Network Management, pp. n/a-n/a, 6 Feb 2012 2012.

[19] M. Bjorklund, YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF), RFC 6020, 2008.

[20] M. Wasserman and T. Goddard, Using the NETCONF Configuration
Protocol over Secure Shell (SSH), RFC 4742, 2006.

[21] T. Goddard, Using NETCONF over the Simple Object Access Protocol
(SOAP), RFC 4743, 2006.

[22] E. Lear and K. Crozier, Using the NETCONF Protocol over the Blocks
Extensible Exchange Protocol (BEEP), RFC 4744, 2006.

[23] M. Badra, NETCONF over Transport Layer Security (TLS), RFC 5539,
2006.

[24] J. Schönwälder, A. Pras, M. Harvan, J. Schippers, and R. van de Meent,
"SNMP Traffic Analysis: Approaches, Tools, and First Results",
Integrated Network Management, 2007. IM '07. 10th IFIP/IEEE
International Symposium on, 2007, pp. 323-332.

[25] G. Cena, I. C. Bertolotti, and A. Valenzano, "Experimental analysis of
latencies in Ethernet communications", Factory Communication
Systems, 2006 IEEE International Workshop on, 2006, pp. 303-312.

[26] Flick, J., "IEEE 802.12 Interface MIB", RFC 2020, 1996.
[27] MIB for support of 802.1Qat Stream Reservation Protocol, (SRP) in

802.1Q Bridges, part of IEEE Std 802.1Q-2011.

834

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

