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Abstract

The problem of optimal control given full state knowl-
edge has been solved many years ago and is very well
documented. Nonetheless, in most control settings it is
virtually impossible to know the exact state value. To deal
with this fact, two concepts were introduced: certainty
equivalence and separation principles. In this paper, it is
shown that the longstanding certainty equivalence princi-
ple does hold in the presence of state uncertainty, leading
in practice to sub-optimal control. Furthermore, it is also
presented a novel mechanism that takes into account the
effect of the sate estimation error in the control. Although
its optimality cannot be established at the moment, it is
proven that in the presence of state uncertainty the new
mechanism outperforms classical approaches.

1. Introduction

Even though some very significant steps have been
made to find optimal control approaches, e.g. Bell’s equa-
tion, many practical situations cannot be mapped to the
conditions of applicability of such works. The set of such
conditions includes, but is not limited to, state estimation
errors, actuation jitter, whether the next actuation period
will have a new actuation value, etc.

The standard approaches used in the presence of state
estimation error are the certainty equivalence and separa-
tion principles. The certainty equivalence principle states
that the optimal control value can be found by first find-
ing the optimal control policy given that the state variable
is known, and then substituting the state variable by its
estimate in the control policy. The separation principle
states that estimation and control are independent. Note
that the certainty equivalence principle builds up on the
separation principle, since it implies that control and esti-
mation can be done separately. However, it is possible that
the separation principle holds while the certainty equiva-
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lence principle does not, e.g. if the optimal control policy
is a function of the estimation covariance. This latter ob-
servation is in the basis of the approach presented in this
paper.

The certainty equivalence principle was believed to be
applicable even to systems with state estimation error, and
became the de facto standard in control practice. It shaped
modern control theory being now completely widespread.
However, the control policy attained from state estima-
tions has fundamental differences with respect to the con-
trol policy attained when complete knowledge of the state
is assumed and then substituted by its estimation, as will
be shown in this paper. This difference stems from the fact
that the estimation error may have a vector component that
can be minimized by the controller.

The inadequate application of the certainty equivalence
principle to systems with state estimation error can be,
in the author’s opinion, traced back to the fact that [15]
showed that in systems in which the certainty equivalence
principle holds the state error covariance matrix is not a
function of the control value (i.e. no dual effect). How-
ever, the converse is not true, since it is possible to make
corrections to the state in such a way that the state error
covariance matrix becomes a function of the state, as will
be shown in section 3.

Nevertheless, the novel approach presented in this pa-
per is also not optimal since, by showing that the con-
trol performance can be improved by taking into account
the estimation, it is also shown that different estimation
covariance matrices lead to different qualities of control,
thereby there is room for further improvement if the co-
variance matrix (i.e. the observation matrix) is chosen
taking into account the control.

The reminder of this paper is organized as follows.
Section 2 presents the related work. Section 3 introduces
the novel mechanism for realizing optimal control in the
presence of state estimation uncertainty and presents a
theoretical proof that the proposed methodology outper-
forms the classical approaches. Finally, Section 4 presents
the main conclusions and lines for future developments.



2. Related Work

Optimal control is a discipline that is arguably around
90 years old and started with the work of Pontryagin and
Richard Bellman, with Bellman’s contribution being

Vk(x) = x′
kQxk+min

uk

(
u′
kRuk + x′

k+1Pk+1xk+1

)
(1)

were Vk = x′
kPkxk is the value function to be minimized,

x is the state, u is the control signal, and Q and R are the
wighting/cost matrices. This equation assumes that the
system has no error whatsoever, thus being, from a control
practice standpoint, essentially an interesting mathemati-
cal curiosity with limited usefulness. This changed when
it got combined with Kalman filters, leading to the Lin-
ear Quadratic Gaussian Regulator. Decoupling estima-
tion and control was justified by the certainty equivalence
principle, which states that if uk = −Lkxk, i.e. the state
is perfectly known, then if only a state estimation (x̂k|k) is
available the optimal control value is uk = −Lkx̂k|k [16].
In [15] it was shown that the certainty equivalence prin-
ciple holds if and only if the estimation error covariance
matrix is not a function of the state i.e.

∂E
[(
x̂k|k − xk

)′ (
x̂k|k − xk

)]
∂xk

= 0 (2)

Recent contributions in this line of work show that
the certainty equivalence principle is still widely accepted
(e.g. [1,3,5,8–13]), though some works put its applicabil-
ity in question for certain system classes. E.g. [6] and [7]
show that in systems in which the parameters are unknown
or because the system is non-linear, the use of the cer-
tainty equivalence leads to suboptimal control sequences,
hence it is proposed an heuristic called partial certainty
equivalence. Similar remarks were made in [4] regarding
self-tuned controllers.

[14] reaches conclusions similar to the ones presented
in this paper, however not providing a controller gain
expression nor an optimal correction for the estimation.
This article only points out, with significant mathemati-
cal background, that the correction of the state estimate
x̂k|k causes the certainty equivalence principle to not hold.
Moreover, the state estimation error model used in [14]
(order 1 IIR filter) is not common in practical control set-
tings. Similar effects are also pointed out in [2].

3. Optimal Control in the Presence of State
Uncertainty

This section presents the novel mechanism for opti-
mal control in the presence of state uncertainty. How-
ever, due to space limitations, only the intuition and a
sketch of the mathematical formulation is presented. A
more detailed and formal presentation of the methodol-
ogy herein described is available in a technical report ac-
cessible at http://www.ieeta.pt/ pedreiras/tmp/opt-control-
state-uncert.pdf.

The main difference between this work and the clas-
sical approaches is centered around the acceptance of the
certainty equivalence principle. Hence, instead of accept-
ing it as given, the optimal control policy was computed
starting from the state estimates, as opposed to computing
starting from the actual state variable and then substitute
its respective estimate. If the results were equal, then the
certainty equivalence principle should hold.

Consider the minimization of

J = x′
NQkxN +

N−1∑
k=0

x′
kQkxk + u′

kRkuk (3)

were Qk and Rk are the weighting/cost matrices of the
states and input at time k, respectively. Also, normally,
RN = 0 and Qk, Rk ≥ 0 (semi-positive definite). Ac-
cording to Bell’s equation

Vk(x)=x′
kQkxk+min

uk

(
u′
kRkuk+x′

k+1Pk+1xk+1

)
(4)

in which J = V0(x), Vk(x) = x′
kPkxk + ck, ck is not a

function of uk and PN = QN .
Consider also the dynamic equation:

xk+1 = Axk +Buk + wk (5)

The solution of equation (4) given equation (5) is the con-
trol law:

uk = −(B′Pk+1B +Rk)
−1B′Pk+1Axk (6)

However, since xk is normally not available, it is sub-
stituted by

uk = −(B′Pk+1B +Rk)
−1B′Pk+1Ax̂k|k (7)

which is the classical optimal control law.
However, if it assumed at start that xk will not be avail-

able, and that the control law will be (pseudo-)linear, i.e.
uk = −Lkx̂k|k, the dynamic equation becomes

xk+1 = Axk −BLkx̂k|k + wk (8)

or
xk+1 = (A−BLk)xk −BLkek|k + wk (9)

with ek|k = x̂k|k − xk. Equation (9) makes it evident that
Lk can be used to minimize the effects of state uncertainty
in cost function.

Returning to equation (4), and substituting equation (9)
and uk = −Lkx̂k|k, then

Vk(x)=x′
kQkxk+min

Lk

[(
Lkx̂k|k

)′
RkLkx̂k|k+(

Axk−BLkx̂k|k+wk

)′
Pk+1

(
Axk−BLkx̂k|k+wk

)] (10)

Note that the minimization is carried out in order to Lk.
Furthermore, Lk is the matrix that minimizes E [Vk(x)],
as opposed to minimize the stochastic variable Vk(x). Un-
less stated otherwise, in the remaining of this paper all



minimizations refer to their respective expectations. For
clarity of presentation, the expectation sign will not be ex-
plicitly presented.

The derivative of the expectation of equation (10) with
respect to Lk is

∂Vk(x)

∂Lk
=2x̂k|kx̂

′
k|kL

′
kRLk+

2x̂k|k
(
Axk −BLkx̂k|k

)′
Pk+1(−B)

(11)

The value of Lk that minimizes equation (10) also
makes ∂Vk(x)

∂Lk
= 0. Let V ∗

k (x) = minVk(x) and L∗
k =

arg V ∗
k (x). Then, after rearranging the terms and trans-

posing

(Rk +B′Pk+1B)L∗
kx̂k|kx̂

′
k|k = B′Pk+1Axx̂

′
k|k (12)

Equation (12) is an important stepping stone. First, if
there is no state estimation error, i.e. x̂k|k = xk, then
Lk = Lkxkx

′
k (xkxk)

†, where Lk is the controller gain of
classical optimal control and (·)† represents the pseudo-
inverse. This means that in this case the computed con-
trol value is equal to the classical optimal one, since
uk = Lkxk and xkx

′
k (xkxk)

†
xk = xk.

3.1. Computing matrix Lk

Equation (12) implies a perfect knowledge of xk, thus
it is unsuitable to compute matrix Lk. To overcome this
hurdle, xkx̂

′
k|k is used instead, which can be done by

noticing that

xkx̂
′
k|k = x̂k|kx̂

′
k|k −

(
ek|ke

′
k|k + ek|kx

′
k

)
(13)

and

ek|k = (In −KkC)
(
Aek−1|k−1 + wk−1

)
+Kkvk (14)

xk = (A−BLk−1)xk−1−BLk−1ek−1|k−1+wk−1 (15)

then

Sk = (In −KkC)ASk−1 (A−BLk−1)
′
+

(In −KkC)
(
−AΣk−1|k−1 (BLk−1) +Qw

) (16)

were Σk|k = E
[
ek|ke

′
k|k

]
and Sk = E

[
ek|kx

′
k

]
.

Note, however, that in the standard Kalman filter Σk|k +

Sk
k→∞−−−−→ 0, therefor the gains of this approach would

be achieved only in the beginning and as time moved for-
ward it would start to behave as a conventional controller.
To solve this problem a new estimator that does not have
this property and that is cappable of providing estimation
of quality similar/better than the Kalman filter is also un-
der development. By manipulating the equations above,
the following relation can be obtained:

L∗
kx̂k|k=Lk

(
In−

(
Σk|k+Sk

)
E
[
x̂k|kx̂

′
k|k

]−1
)
x̂k|k (17)

which, in turn, can be understood as

L∗
kx̂k|k = Lkx̃k|k (18)

in which
x̃k|k = x̂k|k − E

[
ek|k

∣∣x̂k|k
]

(19)

or in its expanded form,

x̃k|k=

(
In−

(
Σk|k+Sk

)
E
[
x̂k|kx̂

′
k|k

]−1
)
x̂k|k (20)

which implies that this novel controller performs a correc-
tion of the state estimate. This correction is based on the
fact that, due to the presence of feedback, both the state
and its estimate are correlated with past state estimation
errors, which in turn are correlated with the present state
estimate error. Hence, it is possible to estimate past er-
ror, which can be used to estimate the present error, thus
making a correction.

3.2. Computing V ∗
k (x) and Pk

In the last section a novel value for L∗
k, given Pk+1,

was derived. This section intends to derive the remaining
aspects of the optimal controller. To this end, first notice
that

∂Vk(x)

∂Lk

∣∣
Lk=L∗

k

= 0 (21)

Hence, it also follows that

1

2
trace

(
∂Vk(x)

∂Lk
Lk

) ∣∣
Lk=L∗

k

= 0

=
(
L∗
kx̂k|k

)′
RkL

∗
kx̂k|k +

(
Axk −BL∗

kx̂k|k
)′

Pk+1

(
−BL∗

kx̂k|k
) (22)

Thus, V ∗
k (x) can be written as

V ∗
k (x)=V

∗
k (x)−

1

2
trace

(
∂Vk(x)

∂Lk
Lk

)∣∣∣
Lk=L∗

k

=x′
kQkxk+

(
Axk−BL∗

kx̂k|k
)′
Pk+1Axk+

trace (QwPk+1)

(23)

where, Qw = E [wkw
′
k]. The last term is due to the equal-

ity E [z′Mz] = trace (E [zz′]M).
Notice that the second term of the last equation still

has a term in x̂k|k, which in turn does not match the initial
form of V ∗

k (x), i.e.

V ∗
k (x) = x′

kPkxk + ck (24)

However, with a few additional manipulations, V ∗
k (x) can

be written as in equation (24), in which

Pk = Q+ (A−BL∗
k)

′Pk+1A (25)

and

ck = trace ((Qw −A(BL∗
kSk)

′)Pk+1) . (26)

Note that Pk referred to in equation (25) is different
from Pk in classical optimal control, since they are com-
puted from different control gain matrices.



3.3. Theoretical Comparison with Classical Optimal
Control

Past subsections provided a derivation of a novel con-
troller. This section proves that this novel controller never
performs worst than the Classical Optimal Control. The
conditions on which both controllers have the same ex-
pected performance are also provided.

Equation (23) presented the value of Vk(x) given that
the controller was designed with the approach presented
in this paper. It is easy to show that Vk(x) given that the
classical optimal control is employed with an uncertain
state is

V ∗
k (x) = x′

kPkxk+

trace
((
AΣk|k (BLk)

′
+Qw

)
Pk+1

) (27)

Note that it was written Pk which intends to distinguish it
from the Pk that appears when the proposed controller is
used. In the same notation, the value of Vk(x) (given that
the controller had the value presented in this paper, see) is

V ∗
k (x) = x′

kPkxk+

trace
((
−Axk

(
Gkx̂k|k−xk

)′
(BLk)

′
+Qw

)
Pk+1

) (28)

with G∗
k defined by L∗

k = LkG
∗
k. Therefore,

Vk(x)
∣∣
Lk=Lk

− Vk(x)
∣∣
Lk=L∗

k

=

trace
(
A
(
Σk|k+xk

(
G∗

kx̂k|k − xk

)′)
(BLk)

′ Pk+1

) (29)

Equation (29) is obviously non-negative.
Hence, the presented controller is never outper-
formed by the classical optimal control. Note
also that x′

k

(
G∗

kx̂k|k−xk

)
is the minimum of

trace
((

Gkx̂k|k − xk

)′ (
Gkx̂k|k − xk

))
, whereas

trace
(
Σk|k

)
is equal to the same function when

Gk = In.

4. Conclusions and Future Work

In this paper it was shown that in general linear systems
the certainty equivalence principle does not hold. This is
so because there is a transmission from the state estima-
tion error to the state that causes a correlation between
them, and in turn can be used to find a better state estimate
(a correction). Such a correction makes the state estimate
error covariance matrix a function of the state, thereby,
making the certainty equivalence principle not hold.

A novel controller that takes this fact was derived. It
was also proved that such novel controller is never outper-
formed by the classical optimal controller.

Future lines of research consist in carrying out the ex-
perimental assessment and validation of the novel method
proposed in the paper, as well as in the optimization of al-
gorithms. Also, the extension of this line of work for the
estimation framework.
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