

Demonstrating an Enhanced Ethernet Switch Supporting Video Sensing with Dynamic QoS

http://www.ieeta.pt/lse/hartes

Rui Santos (rsantos@ua.pt), Paulo Pedreiras (pbrp@ua.pt), Luís Almeida (Ida@fe.up.pt)

DCOSS'12 Hangzhou, China

May 16-18, 2012

Motivation

Video applications with strict QoS requirements are becoming increasingly common

- ^{^λ} E.g. machine vision, object tracking, surveillance, driving aids
- ^x These applications have several idiosyncrasies that must be taken into

Traffic scheduling framework

A flexible multi-level hierarchical server-based scheduling framework for switched Ethernet that:

- Divides, subdivides and so on the network bandwidth in a hierarchical way, creating virtual channels
- Provides real-time guarantees and differentiated QoS (using admission control)

account:

- Require a large bandwidth
- Exhibit high variability, resulting from video compression
- Have dynamic behavior
 - Sporadic activation (e .g. on-demand activation of video cameras in trucks and cars)
 - Acceptable performance can be attained with variable frame-rate, resolution, compression levels, ...
- ^x Frequently demand timely and predictable communications

The FTT-Enabled switch features hierarchical server-based traffic scheduling, providing:

- ^x Disciplined use of the network, thus coping with the large variability of compressed video sources;
- Adaptability, since allows changing the servers budget and thus varying dynamically the bandwidth allocated to each video stream
- ^x Reconfigurability, since permits adding and removing servers dynamically, and consequently enabling and disabling video-streams

- Reconfigure and adapts the channel for varying flows
- Assures temporal isolation among channels

Model Definition

These features are demonstrated via a simplified video surveillance application

Application Platform

The server-based traffic scheduling has been deployed using HaRTES Switch (FTT-enabled Ethernet Switch)

HaRTES Switch:

- Based on FTT paradigm master / multi-slave transmission control technique
- Communications organized in Elementary Cycles (divided in synchronous and asynchronous windows)
- The asynchronous window is handled by the presented server framework

Demonstration

Demo 1 shows:

- The dynamic reconfiguration of the servers
 Changes are made online without any impact on the streams not affected by the reconfiguration
- Traffic isolation among the asynchronous streams

Sources are not allowed to use more bandwidth than the one granted by the server

For that:

- 3 asynchronous video streams transmitted to the monitoring station

Demo 2 shows:

^xStrict periodicity of the isochronous services

^aTraffic isolation between isochronous and asynchronous services The bandwidth, latency and jitter of the isochronous traffic is kept constant, independently of the video streams load

For that:

 2 asynchronous video streams and one periodic data source concurrently transmitted to the monitoring station